Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of conformation traits:
7
Number of QTL / associations found:
37
Number of chromosomes where QTL / associations are found:
14
Chi-squared (χ2) test: are conformation traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome 1
76.01349
13
6.161302e-11
8.625823e-10
Chromosome 2
7.14868
13
0.8943276
9.999934e-01
Chromosome 3
7.14868
13
0.8943276
9.999934e-01
Chromosome 4
4.87837
13
0.9777739
9.999934e-01
Chromosome 5
29.85136
13
0.00494751
3.463257e-02
Chromosome 6
7.14868
13
0.8943276
9.999934e-01
Chromosome 7
0.33782
13
0.998329325823115
9.999934e-01
Chromosome 8
14.71624
13
0.3254007
9.999934e-01
Chromosome 9
7.14868
13
0.8943276
9.999934e-01
Chromosome 12
7.14868
13
0.8943276
9.999934e-01
Chromosome 15
1.09459
13
0.9999934
9.999934e-01
Chromosome 17
7.14868
13
0.8943276
9.999934e-01
Chromosome 26
1.09459
13
0.9999934
9.999934e-01
Chromosome 27
7.14868
13
0.8943276
9.999934e-01
Chi-squared (χ2) test: Which of the 7 conformation traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Body condition score
14.31111
6
0.02634753
3.688654e-02
Conformation score
15.74997
6
0.01516079
2.653138e-02
Crooked digits
3.06387
6
0.8007889
8.007889e-01
Leg bowing
23.20832
6
0.000729626
2.553691e-03
Leg twisting
16.8917
6
0.009689613
2.260910e-02
Polydactyly
36.00002
6
2.756602e-06
1.929621e-05
Tibial dyschondroplasia
3.62502
6
0.7272688
8.007889e-01
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
14
χ2
=
178.027220
Number of traits:
7
df
=
78
Number of QTLs:
37
p-value
=
8.680774e-10
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.