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Abstract

ASReml has several options when forming the pedigree. This paper discusses
the new developments for Release 2. Briefly, these are constraints on the Genetic
groups, changes to the way the Maternal Grandsire model is fitted and provision
for a degree of selfing and inbreeding.
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1 Introduction

An important development in the use of mixed models was the incorporation of
the Numerator Relationship Matrix to account for genetic correlations among
animals. The wonder of this approach is that the inverse relationship matrix is
in general sparser than the relationship matrix itself and not difficult to form
in a recursive manner when parents are listed before their offspring.

However, a few special situations arise in practise which we consider here.
First, in some breeding situations, sires and sire groups are tracked but in-
dividual dam pedigrees are not tracked. This leads to the Maternal Grand-
sire model. ASReml Release 1 accomodated this model by simply inserting a
dummy dam into the pedigree. We now form the inverse omitting this dummy
dam.

In open pollinated forest trees, a proportion of the flowers are self pollinated.
We derive the relationship matrix for a given proportion of selfing.
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In other plant species, for example cereals, the plants are mainly self pollinated
and lines are selfed for several generations to produce varieties for release. The
pedigree relationship needs to take this into account.

ASReml now has 3 Ainverse routines accessed by the !METHOD qualifier.
Results are presented for !METHOD 0 based on Meuwissen and Lou (1992)
which should be slightly faster than the other methods for large pedigrees.

!METHOD 1 should give the same results and is used for testing and com-
parison. !METHOD 2 has not been adapted for Genetic groups, selfing or the
MGS model. Both of these are variations on the method of Quaas (1976).

2 Standard relationship matrix

The standard procedures can be summarised as follows. Let A = {aij} be the
relationship matrix. Let ai,−j be the ith row of A except for the jth element.

(1) Assume the relationship matrix for the base animals is known for exam-
ple, are unrelated and not inbred so that their relationship matrix is an
Identity matrix.

(2) The row of the relationship matrix for the progeny of two parents is
generated as the average of the relationship matrix rows for the parents.

ai,−i = 1
2
(as,−i + ad,−i)

(3) The diagonal element of this new animal is ai,i = 1+ 1
2
as,d = 1+fi where

fi is the inbreeding coefficient.

Applying this rule for two fullsibs and a half-sib generates the following matrix.




Sire 1. 0. 0. 0.5 0.5 0.5

Dam1 0. 1. 0. 0.5 0.5 0.

Dam2 0. 0. 1. 0. 0. 0.5

SibS1 0.5 0.5 0. 1. 0.5 0.25

SibS1 0.5 0.5 0. 0.5 1.0 0.25

SibS2 0.5 0. 0.5 0.25 0.25 1.0




Progressively inverting this matrix gives the sequence:
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


Sire 1 0 0

Dam1 0 1 0

Dam2 0 0 1



⇒




Sire 1.5 0.5 0 −1

Dam1 0.5 1.5 0 −1

Dam2 0 0 1 0

SibS1 −1 −1 0 2




⇒




Sire 2 1 0 −1 −1

Dam1 1 2 0 −1 −1

Dam2 0 0 1 0 0

SibS1 −1 −1 0 2 0

SibS1 −1 −1 0 0 2




⇒




Sire 2.5 1 0.5 −1 −1 −1

Dam1 1 2 0 −1 −1 0

Dam2 0.5 0 1.5 0 0 −1

SibS1 −1 −1 0 2 0 0

SibS1 −1 −1 0 0 2 0

SibS2 −1 0 −1 0 0 2




The rule for progressively generating these inverses is derived as follows.

Assume we have A1 and A−1
1 for a set of animals including the parents of a

new animal. Let p be a vector which performs the operation of averaging the
parental rows of A1. It will be all zero except that the positions corresponding
to the parents will be 0.5.

Then A2 =




A1 A1p

p′A1 1 + 1
2
as,d


 is the expanded relationship matrix.

The standard expression for the inverse of a partitioned matrix is


A B

B′ C




−1

=




A−1 + A−1BQB′A−1 A−1BQ

QB′A−1 Q


 where

Q = (C −B′A−1B)−1. In this case, B = A1p so that A−1B = p.

Thus A−1
2 =




A1 + qpp′ −qp

−qp′ q


 where q = (1 + 1

2
as,d − p′A1p)−1.

Since p has such a simple structure, q = 1/(1− 1
4
(as,s+ad,d)) = 4/(2−(fs+fd))

which simply requires the inbreeding coefficients for each parent.

To test ASReml we obtain A−1, invert it, and check the result. We will use
the following pedigree which includes inbreeding and selfing.

1 0 0

2 0 0
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3 0 0

4 1 1

5 1 1

6 2 2

7 4 6

8 5 6

9 7 8

10 9 9

The following was produced with ASReml qualifiers !METHOD 0 !GIV !DIAG.
First is the relationship matrix obtained by inverting the Inverse relationship
matrix. Rounding errors occur because of the moderate precision of the Ain-
verse .giv file. Then is the Ainverse as returned in the .giv file and finally the
inbreeding coefficients as returned in the ainverse.dia file.

1 1.0
2 0.0 1.0
3 0.0 0.0 1.0
4 1.0 0.0 0.0 1.500
5 1.0 0.0 0.0 1.000 1.500
6 0.0 1.0 0.0 0.000 0.000 1.500
7 0.5 0.5 0.0 0.750 0.500 0.750 1.0000
8 0.5 0.5 0.0 0.500 0.750 0.750 0.6250 1.0000
9 0.5 0.5 0.0 0.625 0.625 0.750 0.8125 0.8125 1.3125

10 0.5 0.5 0.0 0.625 0.625 0.750 0.8125 0.8125 1.3125 1.65625

1 5.0
2 .0 3.0
3 .0 .0 1.0
4 -2.0 .0 .0 3.0
5 -2.0 .0 .0 .0 3.0
6 .0 -2.0 .0 1.0 1.0 4.0
7 .0 .0 .0 -2.0 .0 -2.0 4.5
8 .0 .0 .0 .0 -2.0 -2.0 0.5 4.5
9 .0 .0 .0 .0 .0 .0 -1.0 -1.0 4.90909

10 .0 .0 .0 .0 .0 .0 .0 .0 -2.90909 2.90909

Identity Inbreeding DiagofAinverse
1 0.0000 5.0000
2 0.0000 3.0000
3 0.0000 1.0000
4 0.50000 3.0000
5 0.50000 3.0000
6 0.50000 4.0000
7 0.0000 4.5000
8 0.0000 4.5000
9 0.31250 4.9091

4



10 0.65625 2.9091
Wed 08/09/2004

3 Maternal Grandsire Model

In this situation, no dams are identified, or at least the dams are all treated
as base animals. Consider the relationship matrix for a Maternal Grandsire,
Sire, Dam and Progeny given by




Sire of Dam 1 + fg r 0 (1 + fg)/2 (1 + fg + 2r)/4

Sire r 1 + fs 0 r/2 (2 + 2fs + r)/2

Dam of Dam 0 0 1 0.5 0.25

Dam (1 + fg)/2 r/2 0.5 1 (1 + r/2)/2

Progeny (1+fg+2r)
4

(2+2fs+r)
4

1
4

(1+r/2)
2

1 + r
4




We see that the Progeny line is half the Sire line plus a quarter of the Maternal
Grandsire line except that the diagonal element is 1 plus a quarter of the
relationship between the sire and the maternal grandsire.

The algebra is as before except for a different definition of p and q.

For the non-zero elements of ps being 1
2

and 1
4

for sire and maternal grandsire

respectively, Am =




A1 A1ps

p′sA1 1 + r
4


 and A−1

m =




A−1
1 + psqsp

′
s − psqs

−psqs qs




where qs = (1+r/4−p′sAsps)
−1 = (1−(1+fg +4(1+fs))/16)−1 = 16

11−(fg+4fs)
.

The following results are from ASReml using the same pedigree file as be-
fore but with qualifiers !METHOD 0 !MGS !GIV !DIAG where the !MGS qualifier
causes the third field to be interpreted as the maternal grandsire.

1 1.0000
2 0.0000 1.0000
3 0.0000 0.0000 1.
4 0.7500 0.0000 0. 1.2500
5 0.7500 0.0000 0. 0.5625 1.2500
6 0.0000 0.7500 0. 0.0000 0.0000 1.2500
7 0.3750 0.1875 0. 0.6250 0.2812 0.3125 1.0000
8 0.3750 0.1875 0. 0.2813 0.6250 0.3125 0.2188 1.0000
9 0.2812 0.1406 0. 0.3828 0.2969 0.2344 0.5547 0.3594 1.0547

10 0.2109 0.1055 0. 0.2871 0.2227 0.1758 0.4160 0.2695 0.7910 1.2637
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1 1 2.63636
2 2 1.81818
3 3 1.00000
4 1 -1.09091 4 1.86480
5 1 -1.09091 5 1.86480
6 2 -1.09091 4 0.205128 5 0.205128 6 1.65967
7 4 -0.820513 6 -0.410256 7 2.00466
8 5 -0.820513 6 -0.410256 7 0.181818 8 1.73193
9 7 -0.727273 8 -0.363636 9 2.29358

10 9 -1.11872 10 1.49162
Identity Inbreeding DiagofAinverse

1 0.0000 2.6364
2 0.0000 1.8182
3 0.0000 1.0000
4 0.25000 1.8648
5 0.25000 1.8648
6 0.25000 1.6597
7 0.0000 2.0047
8 0.0000 1.7319
9 0.54688E-01 2.2936
10 0.26367 1.4916

4 Genetic groups

The ASReml qualifier !GROUPS g indicates that the first g identifiers in the
pedigree file relate to genetic groups rather than to individuals in the pop-
ulation. When genetic groups are present, the SIRE and DAM fields should
both be zero for the group lines. All other lines must specify one of the genetic
groups as SIRE or DAM if the actual parent is unknown.

In release 1.62, the option was added to apply ’sum to zero’ constraints on
group effects. If the pedigree file includes genetic groups without constraint,
the ’constant term’ will be included in the genetic group effects. The constant
term is unlikely to be the population average and may generate singularities in
under predictable locations because of the ordering of the ’sparse’ equations.
This may be undesirable.

’Sum to Zero’ constraints are applied to sets of genetic group effects by follow-
ing the set with a dummy genetic group (one with no animals in it). ASReml
then modifies the A inverse to apply a constraint in place of this dummy ge-
netic group. That is, when there are two or more groups containing animals
followed by a group with no animals, the A inverse line for the empty group
is replaced with a line containing 1’s for the preceding set of groups, and zero
otherwise. This Lagrangian constrains the genetic group effects to sum to zero.
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The following results from ASReml !METHOD 0 !GRP 3 !GIV !DIAG. We use
the same pedigree file as before but now the first three lines are genetic groups.
Notice that there are no individuals assigned to the third group. When AS-
Reml has formed the A-inverse, it notes that this ’group’ is empty and inserts
Lagrangian off diagonal elements for this equation.

For the purpose of checking the inverse, the A matrix was calculated after
zeroing the intersection between groups and individuals.

%ex/ex11/amg00.txt
\input /data/ex/ex11/amg00.txt

1 0.33333
2-0.33333 0.33333
3 0.33333 0.66667-0.66667
4 0.00000 0.00000 0.00000 1.00
5 0.00000 0.00000 0.00000 0.00 1.00
6 0.00000 0.00000 0.00000 0.00 0.00 1.0
7 0.00000 0.00000 0.00000 0.50 0.00 0.5 1.000
8 0.00000 0.00000 0.00000 0.00 0.50 0.5 0.250 1.000
9 0.00000 0.00000 0.00000 0.25 0.25 0.5 0.625 0.625 1.125

10 0.00000 0.00000 0.00000 0.25 0.25 0.5 0.625 0.625 1.125 1.5625

1 1 2.00000
2 2 1.00000
3 1 1.00000 2 1.00000 3 0.00000
4 1 -1.00000 4 1.50000
5 1 -1.00000 5 1.50000
6 2 -1.00000 4 0.500000 5 0.500000 6 2.00000
7 4 -1.00000 6 -1.00000 7 2.50000
8 5 -1.00000 6 -1.00000 7 0.500000 8 2.50000
9 7 -1.00000 8 -1.00000 9 4.28571

10 9 -2.28571 10 2.28571
Identity Inbreeding DiagofAinverse

1 -1.0000 2.0000
2 -1.0000 1.0000
3 -1.0000 0.0000
4 0.0000 1.5000
5 0.0000 1.5000
6 0.0000 2.0000
7 0.0000 2.5000
8 0.0000 2.5000
9 0.12500 4.2857
10 0.56250 2.2857

Wed 08/09/2004
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5 Partial selfing




Female Parent 1 + ff r 1 + ff (1 + ff + r)/2

Male Parent r 1 + fm r (1 + fm + r)/2

Selfed 1 + ff r 1 +
1+ff

2
(1 + ff + r)/2

Crossed
1+ff+r

2
1+fm+r

2

1+ff+r

2
1 + r/2




Let s be the proportion selfed. The contribution of the female parent is then
(s + 1

2
(1 − s))af = 1+s

2
af . The contribution from the male parent is 1−s

2
am.

The diagonal element will be s(1+
1+ff

2
)+(1−s)(1+r/2) = 1+

s(1+ff )+(1−s)r

2
.

Thus, the non zero elements of pw are
(

1+s
2

1−s
2

)
and

q−1
w = 1 +

s(1+ff )+(1−s)r

2
−

(
1+s
2

1−s
2

)



1 + ff r

r 1 + fm







1+s
2

1−s
2




= 1− 1
4
((1 + s2)(1 + ff ) + 2sr(1− s) + (1− s)2(1 + fm))

Now this expression for qw involves the covariance between the parents which
previously cancelled out and which is not easily available from the existing
algorithm. However, we expect that if the plant is outcrossed, the male parent
is not known. We could therefore nominate a degree of relationship for seeds
collected in the wild, or just assume the male parent is unrelated.

As a starting point, ASReml assumes that if the male parent is unknown, there
is proportional selfing but if the male parent is identified, that a controlled
mating has occurred. This complicates the algorithm because in the former
case, the nonzero element of p is 1

2
(1 + s) while in the other case, there are

two values of 1
2

The following results from ASReml !METHOD 0 !SELF 0.3 !GIV !DIAG for
the pedigree displayed at the bottom.

1 1.0000
2 0.0000 1.0000
3 0.0000 0.0000 1.
4 1.0000 0.0000 0. 1.5000
5 0.6500 0.0000 0. 0.9750 1.2250
6 0.0000 0.6500 0. 0.0000 0.0000 1.1500
7 0.5000 0.3250 0. 0.7500 0.4875 0.5750 1.0000
8 0.3250 0.3250 0. 0.4875 0.6125 0.5750 0.5312 1.0000
9 0.4125 0.3250 0. 0.6188 0.5500 0.5750 0.7656 0.7656 1.2656

10 0.2681 0.2112 0. 0.4022 0.3575 0.3737 0.4977 0.4977 0.8227 1.1898

1 1 3.00000
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2 2 1.58076
3 3 1.00000 1 -2.00000
4 4 3.45533
5 4 -1.09937 5 2.30672
6 2 -0.893471 4 0.740741 5 0.615385 6 2.73070
7 4 -1.48148 6 -1.48148 7 3.46296
8 5 -1.23077 6 -1.23077 7 0.500000 8 2.96154
9 7 -1.00000 8 -1.00000 9 2.64492

10 9 -0.992189 10 1.52644
Identity Female Male Inbreeding DiagofAinverse

1 0 0 0.0000 3.0000
2 0 0 0.0000 1.5808
3 0 0 0.0000 1.0000
4 1 1 0.50000 3.4553
5 4 0 0.22500 2.3067
6 2 0 0.15000 2.7307
7 4 6 0.0000 3.4630
8 5 6 0.0000 2.9615
9 7 8 0.26562 2.6449

10 9 0 0.18984 1.5264
Fri 17/09/2004

6 Inbred lines

In this situation, after a cross is made, it is selfed a large number of times to
produce an inbred line. The procedure is basically as before except that the
inbreeding is always 1.

For the non-zero elements of pi being 1
2

and 1
2
, Ai =




A1 A1pi

p′iA1 2


 and

A−1
i =




A−1
1 + piqip

′
i − piqi

−piqi qi


 where q−1

i = 2 − p′iA1pi = 1 − 1
2
amf . This

last term comes about from 2−
(

1
2

1
2

)



2 amf

amf 2







1
2

1
2




The special cases are that where no parents are known, pi = (0) so that
q−1
i = 2 and if only one parent is known, pi contains a single 1

2
so that

q−1
i = 2− 1

2
21

2
= 1.5

The following results are from ASReml using the pedigree file displayed be-
low with qualifiers !METHOD 0 !INBRED 1.0 !GIV !DIAG where the !INBRED
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qualifier implies inbred lines. Note that ’selfing’ is not permitted in the pedi-
gree with inbred lines as it will generate a singularity.

1 2.0000
2 0.0000 2.0000
3 0.0000 0.0000 2.00000
4 1.0000 0.0000 1.0000 2.0000
5 0.0000 1.0000 1.0000 0.5000 2.0000
6 0.5000 0.5000 1.0000 1.2500 1.2500 2.0000
7 0.7500 0.2500 1.0000 1.6250 0.8750 1.6250 2.0000
8 1.3750 0.1250 0.5000 1.3125 0.4375 1.0625 1.3750 2.0000
9 1.0625 0.1875 0.7500 1.4687 0.6562 1.3437 1.6875 1.6875 2.0000

10 0.7812 0.3437 0.8750 1.3594 0.9531 1.6719 1.6562 1.3750 1.6719 2.0

1 1 1.15000
2 2 0.750000
3 1 0.250000 2 0.250000 3 1.00000
4 1 -0.500000 3 -0.500000 4 2.00000
5 2 -0.500000 3 -0.500000 4 0.333333 5 1.33333
6 4 0.00000 5 -0.666667 6 2.76190
7 1 0.400000 4 -1.33333 6 -1.33333 7 3.86667
8 1 -0.800000 7 0.00000 8 2.40000
9 6 0.761905 7 -1.60000 8 -1.60000 9 3.96190

10 6 -1.52381 9 -1.52381 0 3.04762
Identity Female Male Inbreeding DiagofAinverse

1 0 0 1.0000 1.1500
2 0 0 1.0000 0.75000
3 0 0 1.0000 1.0000
4 1 3 1.0000 2.0000
5 2 3 1.0000 1.3333
6 4 5 1.0000 2.7619
7 6 4 1.0000 3.8667
8 7 1 1.0000 2.4000
9 8 7 1.0000 3.9619

10 9 6 1.0000 3.0476
Thu 16/09/2004

For example, the coefficient 3.0476 = 1/(1− 43/64) where 43/64 = 1
2
a96 The

calculation of thes relationship required development of a recursive routine
which works as follows. Define three vectors H to hold the index of the higher
numbered parent, L to hold the index of the other parent, and c to hold the
contributions to relationship. Initialise a69 = 0, k = 1, H1 = 9, and L1 = 6.

While k > 0,

if Hk equals Lk, add ck to a and decrement k.
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else identify sire and dam of Hk (s and d) and replace (Hk, Lk, ck) with
(max(s, Lk), min(s, Lk,

1
2
ck) and (Hk+1, Lk+1, ck+1) with (max(d, Lk), min(d, Lk,

1
2
ck) (but omit operations if s and/or d are 0, adjusting k accordingly).

H,L,c k=1 k=2 k=3 k=4 k=5 k=6 a

9,6,1

8,6,1/2 7,6,1/2

8,6,1/2 6,4,1/4 6,6,1/4

8,6,1/2 5,4,1/8 4,4,1/8 1/4

8,6,1/2 4,3,1/16 4,2,1/16 3/8

8,6,1/2 4,3,1/16 3,2,1/32 2,1,1/32 3/8

8,6,1/2 3,3,1/32 3,1,1/32 3/8

7,6,1/4 6,1,1/4 13/32

7,6,1/4 4,1,1/8 5,1,1/8 13/32

7,6,1/4 4,1,1/8 2,1,1/16 3,1,1/16 13/32

7,6,1/4 1,1,1/16 3,1,1/16 13/32

6,6,1/8 6,4,1/8 15/32

6,6,1/8 4,4,1/16 5,4,1/16 15/32

6,6,1/8 4,4,1/16 4,2,1/32 4,3,1/32 15/32

6,6,1/8 4,4,1/16 4,2,1/32 3,3,1/64 3,1,1/64 15/32

6,6,1/8 4,4,1/16 1,2,1/64 3,2,1/64 31/64

6,6,1/8 35/64

43/64

While the ASReml syntax allows for an inbreeding coefficient less that one to
be specified, the algebra has not been worked through for that case.

7 Mixed Model equations

If y denotes the n × 1 vector of observations, the linear mixed model can be
written as

y = Xτ + Zu + e (1)

where τ is the p× 1 vector of fixed effects, X is an n× p design matrix of full
column rank which associates observations with the appropriate combination
of fixed effects, u is the q × 1 vector of random effects, Z is the n × q de-
sign matrix which associates observations with the appropriate combination
of random effects, and e is the n× 1 vector of residual errors.
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The model (1) is called a linear mixed model or linear mixed effects model. It
is assumed

[
u
e

]
∼ N

([
0
0

]
,

[
G(γ) 0

0 R(φ)

])
(2)

where the matrices G and R are functions of parameters γ and φ, respectively.

Details of the AI algorithm for REML estimation can be found in several
places including Gilmour et al. (1995). It revolves around the mixed model
equations derived from the objective function

logfY (y | u ; τ ,R) + logfU (u ; G) .

which is the log-joint distribution of (Y ,u). Differentiating with respect to τ
and u leads to the mixed model equations (Robinson, 1991) which are given
by




X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + G−1







τ̂

ũ


 =




X ′R−1y

Z ′R−1y


 . (3)

These can be written as

Cβ̃ = WR−1y

where C = W ′R−1W + G∗, β = [τ ′ u′]′ and G∗ =



0 0

0 G−1


 .

The solution of (3) requires values for the variance parameters γ and φ. In
practice we replace γ and φ by their REML estimates γ̂ and φ̂.

The AI algorithm uses the trace((∂C) C−1) when calculating the score and
uses Y ′PY as the the Average Information matrix where y′Py is the usual
residual sum of squares and Y is a matrix of working variables, one for
each variance parameter, given by either (∂R) R−1e for parameters of R
or Z(∂G) G−1u for parameters of G.

Y ′PY is formed by an absorption process (Gilmour et al 1995) which is quite
efficient when C is sparse provided a judicious ordering is used. The other
part of the process requires calculation of trace((∂C) C−1). We only need the
elements of C−1 which correspond to non-zero elements in C when calculating
this trace since the derivative ∂C is zero for all zero elements of C. There is a
therefore a huge advantage in forming as few extra elements as possible when
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forming the required elements of C−1. This is controlled by the order in which
the equations are processed.

The AI algorithm requires space for C−1 and for working variables and their
cross-products. ASReml uses the same memory to form the mixed model equa-
tions, absorb them and then hold the (partial) inverse.

For convenience, we have described the situation where both R and G are
positive definite but we in fact also allow special cases where G is singular or
negative definite (for example Thompson et al 2003).

8 Discussion
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