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Preface

ASReml is a statistical package that fits linear mixed models using Residual Max-
imum Likelihood (REML). It has been under development since 1993 and is a
joint venture between the Biometrics Program of NSW Department of Primary
Industries and the Biomathematics and Bioinformatics Division (previously the
Statistics Department) of Rothamsted Research. This guide relates to Release 2
of ASReml, completed in December 2005. Changes in this version are indicated
by the word New in the margin. A separate document, ASReml Update. What’sNew

new in Release 2.00, is available to highlight the changes from Release 1.00.

Linear mixed effects models provide a rich and flexible tool for the analysis of
many data sets commonly arising in the agricultural, biological, medical and en-
vironmental sciences. Typical applications include the analysis of (un)balanced
longitudinal data, repeated measures analysis, the analysis of (un)balanced de-
signed experiments, the analysis of multi-environment trials, the analysis of both
univariate and multivariate animal breeding and genetics data and the analysis
of regular or irregular spatial data.

ASReml provides a stable platform for delivering well established procedures while
also delivering current research in the application of linear mixed models. The
strength of ASReml is the use of the Average Information (AI) algorithm and
sparse matrix methods for fitting the linear mixed model. This enables it to
analyse large and complex data sets quite efficiently.

One of the strengths of ASReml is the wide range of variance models for the ran-
dom effects in the linear mixed model that are available. There is a potential cost
for this wide choice. Users should be aware of the dangers of either overfitting
or attempting to fit inappropriate variance models to small or highly unbalanced
data sets. We stress the importance of using data-driven diagnostics and encour-
age the user to read the examples chapter, in which we have attempted to not
only present the syntax of ASReml in the context of real analyses but also to
indicate some of the modelling approaches we have found useful.

i



Preface ii

ASReml is one of several user interfaces to the underlying computational engine.
Genstat in its REML directive and the asreml class of S language functions
(Butler et al. 2007) available for S-Plus (ASReml-S) and R (ASReml-R) use the
same engine. These are available from VSN (http://www.vsni.co.uk) and have
good data manipulation and graphical facilities.

The focus in developing ASReml has been on the core engine and it is freely
acknowledged that its user interface is not to the level of these other packages.
Nevertheless, as the developers interface, it is functional, it gives access to every-
thing that the core can do and is especially suited to batch processing and running
of large models without the overheads of other systems. Feedback from users is
welcome and attempts will be made to rectify identified problems in ASReml.

The guide has 15 chapters. Chapter 1 introduces ASReml and describes the con-
ventions used in this guide. Chapter 2 outlines some basic theory while Chapter
3 presents an overview of the syntax of ASReml through a simple example. Data
file preparation is described in Chapter 4 and Chapter 5 describes how to input
data into ASReml. Chapters 6 and 7 are key chapters which present the syntax for
specifying the linear model and the variance models for the random effects in the
linear mixed model. Chapters 8 and 9 describe special commands for multivari-
ate and genetic analyses respectively. Chapter 10 deals with prediction of linear
functions of fixed and random effects in the linear mixed model and Chapter 11
presents the syntax for forming functions of variance components. Chapter 12
demonstrates running an ASReml job features available and Chapter 13 gives a
detailed explanation of the output files. Chapter 14 gives an overview of the error
messages generated in ASReml and some guidance as to their probable cause. The
guide concludes with the most extensive chapter which presents the examples.

Briefly, the improvements in Release 2.00 include more robust variance parame-
ter updating so that ’Convergence Failure’ is less likely, extensions to the syntax,
inclusion of the Matérn correlation model, ability to plot predicted values, im-
provements to the Analysis of Variance procedures, improvements to the handling
of pedigrees and some increases in computational speed.

The data sets and ASReml input files used in this guide are available from
http://www.vsni.co.uk/products/asreml as well as in the examples direc-
tory of the distribution CD-ROM.They remain the property of the authors or of
the original source but may be freely distributed provided the source is acknowl-
edged. The authors would appreciate feedback and suggestions for improvements
to the program and this guide.



Preface iii

Proceeds from the licensing of ASReml are used to support continued develop-
ment to implement new developments in the application of linear mixed models.
The developmental version is available to supported licensees via a website upon
request to VSN. Most users will not need to access the developmental version
unless they are actively involved in testing a new development.
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1.1 What ASReml can do

ASReml (pronounced A S Rem el) is used to fit linear mixed models to quite large
data sets with complex variance models. It extends the range of variance models
available for the analysis of experimental data. ASReml has application in the
analysis of

• (un)balanced longitudinal data,

• repeated measures data (multivariate analysis of variance and spline type mod-
els),

• (un)balanced designed experiments,

• multi-environment trials and meta analysis,

• univariate and multivariate animal breeding and genetics data (involving a
relationship matrix for correlated effects),

• regular or irregular spatial data.

The engine of ASReml forms the basis of the REML procedure in GENSTAT and
the asreml class of S language functions (Butler et al. 2007) available for S-Plus
(ASReml-S) and R (ASReml-R)1. Both of these have good data manipulation and
graphical facilities. and will be adequate for many analyses, some large problems
will need to use ASReml. The ASReml user interface is terse. Most effort has
been directed towards efficiency of the engine. It normally operates in a batch
mode.

Problem size depends on the sparsity of the mixed model equations and the size
of your computer. However, models with 500,000 effects have been fitted suc-
cessfully. The computational efficiency of ASReml arises from using the Average
Information REML procedure (giving quadratic convergence) and sparse matrix
operations. ASReml has been operational since March 1996 and is updated peri-
odically.

1.2 Installation

Installation instructions are distributed with the program. If you require help
with installation, please email support@asreml.co.uk.

1These are available from VSN (http://www.vsni.co.uk).
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1.3 User Interface

ASReml is essentially a batch program with some optional interactive features.New

The typical sequence of operations when using ASReml is

• Prepare the data (typically using a spreadsheet or data base program)

• Export that data as an ASCII file (for example export it as a .csv (comma
separated values) file from Excel)

• Prepare a job file with filename extension .as

• Run the job file with ASReml

• Review the various output files

• revise the job and re run it, or

• extract pertinant results for your report.

So you need an ASCII editor to prepare input files and review and print output
files. We directly provide two options.

ASReml-W

ASReml-W is a graphical tool distributed by VSN (http://www.vsni.co.uk)
allowing the user to edit and run ASReml programs, and then view the output.
It is available on the following platforms:

• Windows 32-bit,

• Windows 64-bit,

• Linux 32-bit,

• Linux 64-bit, and

• Sun/Solaris 32-bit

ASReml-W has a built-in help system explaining its use.

ConTEXT

ConTEXT is a third-party freeware text editor, with programming extensions
which make it a suitable environment for running ASReml under Windows. The
ConTEXT directory on the CD-ROM includes installation files and instructions
for configuring it for use in ASReml . Full details of ConTEXT are available from
http://www.context.cx/.
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1.4 How to use this guide

The guide consists of 15 chapters. Chapter 1 introduces ASReml and describes
the conventions used in the guide. Chapter 2 outlines some basic theory whichTheory

you may need to come back to.

New ASReml users are advised to read Chapter 3 before attempting to code theirGetting started

first job. It presents an overview of basic ASReml coding demonstrated on a real
data example. Chapter 15 presents a range of examples to assist users further.Examples

When coding you first job, look for an example to use as a template.

Data file preparation is described in Chapter 4, while Chapter 5 describes howData file

to input data into ASReml. Chapters 6 and 7 are key chapters which present the
syntax for specifying the linear model and the variance models for the random
effects in the linear mixed model. Variance modelling is a complex aspect ofLinear model

analysis. We introduce variance modelling in ASReml by example in Chapter 7.Variance model

Chapters 8 and 9 describe special commands for multivariate and genetic analyses
respectively. Chapter 10 deals with prediction of fixed and random effects fromPrediction

the linear mixed model and Chapter 11 presents the syntax for forming functions
of variance components.

Chapter 12 discusses the operating system level command for running an ASReml
job. Chapter 13 gives a detailed explanation of the output files. Chapter 14 givesOutput

an overview of the error messages generated in ASReml and some guidance as to
their probable cause.

1.5 Help and discussion list

The ASReml help accessable through ASReml-W can also be accessed directly
(ASReml.chm).

Supported users of ASReml may email support@asreml.co.uk for assistance.
When requesting help for a job that is not working as you expect, please send
the input command file, the data file and the corresponding primary output file
along with a description of the problem.

There is an ASReml discussion list. If you would like to join, change your email ad-New

dress or be removed from the list, email arthur.gilmour@dpi.nsw.gov.au with
your request. The address for messages to the list is ASReml-L@dpi.nsw.gov.au.
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There is a User Area on the website (http://www.VSNi.co.uk select ASReml and
then User Area) which contains contributed material that may be of assistance.
It includes an ASReml tutorial in the form of sixteen sets of slides with audio
(.mp3) discussion. The sessions last about 20 minutes each.

1.6 Typographic conventions

A hands on approach is the best way to develop a working understanding of a new
computing package. We therefore begin by presenting a guided tour of ASReml
using a sample data set for demonstration (see Chapter 3). Throughout the guide
new concepts are demonstrated by example wherever possible.

An example ASReml code box

bold type highlights sections

of code currently under

discussion

remaining code is not

highlighted
... indicates that some of the

original code is omitted from

the display

In this guide you will find framed sample
boxes to the right of the page as shown here.
These contain ASReml command file (sample)
code. Note that

– the code under discussion is highlighted in
bold type for easy identification,

– the continuation symbol (
... ) is used to

indicate that some of the original code is
omitted.

Data examples are displayed in larger boxes in the body of the text, see, for
example, page 42. Other conventions are as follows:

• keyboard key names appear in smallcaps, for example, tab and esc,

• example code within the body of the text is in this size and font and is
highlighted in bold type, see pages 33 and 49,

• in the presentation of general ASReml syntax, for example

[path] asreml basename[.as] [arguments]

– typewriter font is used for text that must be typed verbatim, for example,
asreml and .as after basename in the example,

– italic font is used to name information to be supplied by the user, for exam-
ple, basename stands for the name of a file with an .as filename extension,

– square brackets indicate that the enclosed text and/or arguments are not
always required.

• ASReml output is in this size and font, see page 35,

• this font is used for all other code.
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2.1 The linear mixed model

Introduction

If y denotes the n × 1 vector of observations, the linear mixed model can be
written as

y = Xτ + Zu + e (2.1)

where τ is the p × 1 vector of fixed effects, X is an n × p design matrix of full
column rank which associates observations with the appropriate combination of
fixed effects, u is the q× 1 vector of random effects, Z is the n× q design matrix
which associates observations with the appropriate combination of random effects,
and e is the n× 1 vector of residual errors.

The model (2.1) is called a linear mixed model or linear mixed effects model. It
is assumed [

u
e

]
∼ N

([
0
0

]
, θ

[
G(γ) 0

0 R(φ)

])
(2.2)

where the matrices G and R are functions of parameters γ and φ, respectively.
The parameter θ is a variance parameter which we will refer to as the scale
parameter. In mixed effects models with more than one residual variance, arising
for example in the analysis of data with more than one section (see below) or
variate, the parameter θ is fixed to one. In mixed effects models with a single
residual variance then θ is equal to the residual variance (σ2). In this case R
must be a correlation matrix (see Table 2.1 for a discussion).

Direct product structures

To undertake variance modelling in ASReml you need to understand the formation
of variance structures via direct products (⊗). The direct product of two matrices
A (m×p) and B (n×q) is




a11B . . . a1pB

...
. . .

...

am1B
. . . ampB




.

Direct products in R structures

Consider a vector of common errors associated with an experiment. The usual
least squares assumption (and the default in ASReml) is that these are indepen-
dently and identically distributed (IID). However, if e was from a field experiment



2 Some theory 8

laid out in a rectangular array of r rows by c columns, we could arrange the resid-
uals as a matrix and might consider that they were autocorrelated within rows
and columns. Writing the residuals as a vector in field order, that is, by sort-
ing the residuals rows within columns (plots within blocks) the variance of the
residuals might then be

σ2
e Σc(ρc)⊗Σr(ρr)

where Σc(ρc) and Σr(ρr) are correlation matrices for the row model (order r, auto-
correlation parameter ρr) and column model (order c, autocorrelation parameter
ρc) respectively. More specifically, a two-dimensional separable autoregressive
spatial structure (AR1 ⊗ AR1) is sometimes assumed for the common errors in
a field trial analysis (see Gogel (1997) and Cullis et al. (1998) for examples). In
this case

Σr =




1
ρr 1
ρ2

r ρr 1
...

...
...

. . .
ρr−1

r ρr−2
r ρr−3

r . . . 1




and Σc =




1
ρc 1
ρ2

c ρc 1
...

...
...

. . .
ρc−1

c ρc−2
c ρc−3

c . . . 1




.

Alternatively, the residuals might relate to a multivariate analysis with nt traitsSee Chapter 8

for further de-

tails

and n units and be ordered traits within units. In this case an appropriate
variance structure might be

In ⊗Σ

where Σ (nt×nt) is a general or unstructured variance matrix.

Direct products in G structures

Likewise, the random terms in u in the model may have a direct product variance
structure. For example, for a field trial with s sites, g varieties and the effects
ordered varieties within sites, the model term site.variety may have the variance
structure

Σ⊗ Ig

where Σ is the variance matrix for sites. This would imply that the varieties are
independent random effects within each site, have different variances at each site,
and are correlated across sites. Important Whenever a random term is formed
as the interaction of two factors you should consider whether the IID assumption
is sufficient or if a direct product structure might be more appropriate.
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Variance structures for the errors: R structures

The vector e will in some situations be a series of vectors indexed by a fac-
tor or factors. The convention we adopt is to refer to these as sections. Thus
e = [e′1, e′2, . . . , e′s]′ and the ej represent the errors of sections of the data. For ex-
ample, these sections may represent different experiments in a multi-environment
trial (MET), or different trials in a meta analysis. It is assumed that R is the
direct sum of s matrices Rj , j = 1 . . . s, that is,

R = ⊕s
j=1Rj =




R1 0 . . . 0 0
0 R2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Rs−1 0
0 0 . . . 0 Rs




,

so that each section has its own variance structure which is assumed to be inde-
pendent of the structures in other sections.

A structure for the residual variance for the spatial analysis of multi-environment
trials (Cullis et al., 1998) is given by

Rj = Rj(φj)
= σ2

j (Σj(ρj)).

Each section represents a trial and this model accounts for between trial error
variance heterogeneity (σ2

j ) and possibly a different spatial variance model for
each trial.

In the simplest case the matrix R could be known and proportional to an identity
matrix. Each component matrix, Rj (or R itself for one section) is assumed to
be the direct product (see Searle, 1982) of one, two or three component matrices.
The component matrices are related to the underlying structure of the data. If the
structure is defined by factors, for example, replicates, rows and columns, then
the matrix R can be constructed as a direct product of three matrices describing
the nature of the correlation across replicates, rows and columns. These factors
must completely describe the structure of the data, which means that

1. the number of combined levels of the factors must equal the number of data
points,

2. each factor combination must uniquely specify a single data point.

These conditions are necessary to ensure the expression var (e) = θR is valid.
The assumption that the overall variance structure can be constructed as a direct
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product of matrices corresponding to underlying factors is called the assumption
of separability and assumes that any correlation process across levels of a factor
is independent of any other factors in the term. Multivariate data and repeated
measures data usually satisfy the assumption of separability. In particular, if the
data are indexed by factors units and traits (for multivariate data) or times
(for repeated measures data), then the R structure may be written as units ⊗
traits or units ⊗ times. This assumption is sometimes required to make the
estimation process computationally feasible, though it can be relaxed, for certain
applications, for example fitting isotropic covariance models to irregularly spaced
spatial data.

Variance structures for the random effects: G structures

The q × 1 vector of random effects is often composed of b subvectors u =
[u′1 u′2 . . . u′b]

′ where the subvectors ui are of length qi and these subvectors
are usually assumed independent normally distributed with variance matrices
θGi. Thus just like R we have

G = ⊕b
i=1Gi =




G1 0 . . . 0 0
0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Gb−1 0
0 0 . . . 0 Gb




.

There is a corresponding partition in Z, Z = [Z1 Z2 . . . Zb]. As before each
submatrix, Gi, is assumed to be the direct product of one, two or three component
matrices. These matrices are indexed for each of the factors constituting the term
in the linear model. For example, the term site.genotype has two factors and so
the matrix Gi is comprised of two component matrices defining the variance
structure for each factor in the term.

Models for the component matrices Gi include the standard model for which
Gi = γiIqi and direct product models for correlated random factors given by

Gi = Gi1 ⊗Gi2 ⊗Gi3

for three component factors. The vector ui is therefore assumed to be the vector
representation of a 3-way array. For two factors the vector ui is simply the vec
of a matrix with rows and columns indexed by the component factors in the
term, where vec of a matrix is a function which stacks the columns of its matrix
argument below each other.

A range of models are available for the components of both R and G. They
include correlation (C) models (that is, where the diagonals are 1), or covariance



2 Some theory 11

(V ) models and are discussed in detail in Chapter 7. Some correlation models
include

• autoregressive (order 1 or 2)

• moving average (order 1 or 2)

• ARMA(1,1)

• uniform

• banded

• general correlation.

Some of the covariance models include

• diagonal (that is, independent with heterogeneous variances)

• antedependence

• unstructured

• factor analytic.

There is the facility within ASReml to allow for a nonzero covariance between the
subvectors of u, for example in random regression models. In this setting the
intercept and say the slope for each unit are assumed to be correlated and it is
more natural to consider the two component terms as a single term, which gives
rise to a single G structure. This concept is discussed later.

2.2 Estimation

Estimation involves two processes that are closely linked. They are performed
within the ‘engine’ of ASReml. One process involves estimation of τ and predic-
tion of u (although the latter may not always be of interest) for given θ, φ and γ.
The other process involves estimation of these variance parameters. Note that in
the following sections we have set θ = 1 to simplify the presentation of results.

Estimation of the variance parameters

Estimation of the variance parameters is carried out using residual or restricted
maximum likelihood (REML), developed by Patterson and Thompson (1971). An
historical development of the theory can be found in Searle et al. (1992). Note
firstly that

y ∼ N(Xτ , H). (2.3)
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where H = R + ZGZ ′. REML does not use (2.3) for estimation of variance
parameters, but rather uses a distribution free of τ , essentially based on error
contrasts or residuals. The derivation given below is presented in Verbyla (1990).

We transform y using a non-singular matrix L = [L1 L2] such that

L′1X = Ip, L′2X = 0.

If yj = L′jy, j = 1, 2,
[
y1

y2

]
∼ N

([
τ
0

]
,

[
L′1HL1 L′1HL2

L′2HL1 L′2HL2

])
.

The full distribution of L′y can be partitioned into a conditional distribution,
namely y1|y2, for estimation of τ , and a marginal distribution based on y2 for
estimation of γ and φ; the latter is the basis of the residual likelihood.

The estimate of τ is found by equating y1 to its conditional expectation, and
after some algebra we find,

τ̂ = (X ′H−1X)−1X ′H−1y

Estimation of κ = [γ ′ φ′]′ is based on the log residual likelihood,

`R = −1
2
(log detL′2H

−1L2 + y′2(L
′
2HL2)−1y2)

= −1
2
(log detX ′H−1X + log detH + y′Py2) (2.4)

where
P = H−1 −H−1X(X ′H−1X)−1X ′H−1.

Note that y′Py = (y−Xτ̂ )′H−1(y−Xτ̂ ). The log-likelihood (2.4) depends on
X and not on the particular non-unique transformation defined by L.

The log residual likelihood (ignoring constants) can be written in terms of the
mixed model equations (see equation 2.11) with W = [X Z] as

`R = −1
2
(log detC + log detR + log detG + y′Py) (2.5)

where C = W ′R−1W + G∗, G∗ =

[
0 0
0 G−1

]
and

P = R−1 −R−1WC−1W ′R−1
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Letting κ = (γ, φ), the REML estimates of κi are found by calculating the score

U(κi) = ∂`R/∂κi = −1
2
[tr (PH i)− y′PH iPy] (2.6)

and equating to zero. Note that H i = ∂H/∂κi.

The elements of the observed information matrix are

− ∂2`R

∂κi∂κj
=

1
2
tr (PH ij)− 1

2
tr (PH iPHj)

+ y′PH iPHjPy − 1
2
y′PH ijPy (2.7)

where H ij = ∂2H/∂κi∂κj .

The elements of the expected information matrix are

E

(
− ∂2`R

∂κi∂κj

)
=

1
2
tr (PH iPHj) . (2.8)

Given an initial estimate κ(0), an update of κ, κ(1) using the Fisher-scoring (FS)
algorithm is

κ(1) = κ(0) + I(κ(0),κ(0))−1U(κ(0)) (2.9)

where U(κ(0)) is the score vector (2.6) and I(κ(0), κ(0)) is the expected infor-
mation matrix (2.8) of κ evaluated at κ(0).

For large models or large data sets, the evaluation of the trace terms in either
(2.7) or (2.8) is either not feasible or is very computer intensive. To overcome
this problem ASReml uses the AI algorithm (Gilmour, Thompson and Cullis,
1995). The matrix denoted by IA is obtained by averaging (2.7) and (2.8) and
approximating y′PH ijPy by its expectation, tr (PH ij) in those cases when
H ij 6= 0. For variance components models (that is those linear with respect to
variances in H), the terms in IA are exact averages of those in (2.7) and (2.8).
The basic idea is to use IA(κi, κj) in place of the expected information matrix in
(2.9) to update κ.

The elements of IA are

IA(κi, κj) =
1
2
y′PH iPHjPy. (2.10)

The IA matrix is the (scaled) residual sums of squares and products matrix of

y = [y1, . . . , yk]
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where yi is the ‘working’ variate for κi and is given by

yi = H iPy

= H iR
−1ẽ

= RiR
−1ẽ, κi ∈ φ

= ZGiG
−1ũ, κi ∈ γ

where ẽ = y −Xτ̂ − Zũ, τ̂ and ũ are solutions to (2.11). In this form the AI
matrix is relatively straightforward to calculate.

The combination of the AI algorithm with sparse matrix methods, in which only
non-zero values are stored, gives an efficient algorithm in terms of both computing
time and workspace.

Estimation/prediction of the fixed and random effects

To estimate τ and predict u the objective function

log fY (y | u ; τ , R) + log fU (u ; G)

is used. The is the log-joint distribution of (Y ,u).

Differentiating with respect to τ and u leads to the mixed model equations
(Robinson, 1991) which are given by

[
X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z + G−1

] [
τ̂
ũ

]
=

[
X ′R−1y
Z ′R−1y

]
. (2.11)

These can be written as
Cβ̃ = WR−1y

where C = W ′R−1W + G∗, β = [τ ′ u′]′ and

G∗ =

[
0 0
0 G−1

]
.

The solution of (2.11) requires values for γ and φ. In practice we replace γ and
φ by their REML estimates γ̂ and φ̂.

Note that τ̂ is the best linear unbiased estimator (BLUE) of τ , while ũ is the best
linear unbiased predictor (BLUP) of u for known γ and φ. We also note that

β̃ − β =
[

τ̂ − τ
ũ− u

]
∼ N

([
0
0

]
, C−1

)
.
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2.3 What are BLUPs?

Consider a balanced one-way classification. For data records ordered r repeats
within b treatments regarded as random effects, the linear mixed model is y =
Xτ + Zu + e where X = 1b ⊗ 1r is the design matrix for τ (the overall mean),
Z = Ib ⊗ 1r is the design matrix for the b (random) treatment effects ui and e
is the error vector. Assuming that the treatment effects are random implies that
u ∼ N(Aψ, σ2

bIb), for some design matrix A and parameter vector ψ. It can be
shown that

ũ =
rσ2

b

rσ2
b + σ2

(ȳ − 1ȳ··) +
σ2

rσ2
b + σ2

Aψ (2.12)

where ȳ is the vector of treatment means, ȳ·· is the grand mean. The differences
of the treatment means and the grand mean are the estimates of treatment effects
if treatment effects are fixed. The BLUP is therefore a weighted mean of the data
based estimate and the ‘prior’ mean Aψ. If ψ = 0, the BLUP in (2.12) becomes

ũ =
rσ2

b

rσ2
b + σ2

(ȳ − 1ȳ··) (2.13)

and the BLUP is a so-called shrinkage estimate. As rσ2
b becomes large relative to

σ2, the BLUP tends to the fixed effect solution, while for small rσ2
b relative to σ2

the BLUP tends towards zero, the assumed initial mean. Thus (2.13) represents a
weighted mean which involves the prior assumption that the ui have zero mean.

Note also that the BLUPs in this simple case are constrained to sum to zero. This
is essentially because the unit vector defining X can be found by summing the
columns of the Z matrix. This linear dependence of the matrices translates to
dependence of the BLUPs and hence constraints. This aspect occurs whenever
the column space of X is contained in the column space of Z. The dependence
is slightly more complex with correlated random effects.



2 Some theory 16

2.4 Combining variance models

The combination of variance models within G structures and R structures and
between G structures and R structures is a difficult and important concept. The
underlying principle is that each Ri and Gi variance model can only have a single
scaling variance parameter associated with it. If there is more than one scaling
variance parameter for any Ri or Gi then the variance model is overspecified,
or nonidentifiable. Some variance models are presented in Table 2.1 to illustrate
this principle.

While all 9 forms of model in Table 2.1 can be specified within ASReml only
models of forms 1 and 2 are recommended. Models 4-6 have too few variance pa-
rameters and are likely to cause serious estimation problems. For model 3, where
the scale parameter θ has been fitted (univariate single site analysis), it becomes
the scale for G. This parameterisation is bizarre and is not recommended. Mod-
els 7-9 have too many variance parameters and ASReml will arbitrarily fix one of
the variance parameters leading to possible confusion for the user. If you fix the
variance parameter to a particular value then it does not count for the purposes
of applying the principle that there be only one scaling variance parameter. That
is, models 7-9 can be made identifiable by fixing all but one of the nonidentifiable
scaling parameters in each of G and R to a particular value.

Table 2.1 Combination of models for G and R structures

model G1 G2 R1 R2 θ comment

1. V C C C y valid
2. V C V C n valid
3. C C V C y valid, but not recommended
4. * * C C n inappropriate as R is a correlation model
5. C C C C y inappropriate, same scale for R and G
6. C C V C n inappropriate, no scaling parameter for G
7. V V * * * nonidentifiable, 2 scaling parameters for G
8. V C V C y nonidentifiable, scale for R and overall scale
9. * * V V * nonidentifiable, 2 scaling parameters for R

* indicates the entry is not relevant in this case
Note that G1 and G2 are interchangeable in this table, as are R1 and R2
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2.5 Inference: Random effects

Tests of hypotheses: variance parameters

Inference concerning variance parameters of a linear mixed effects model usu-
ally relies on approximate distributions for the (RE)ML estimates derived from
asymptotic results.

It can be shown that the approximate variance matrix for the REML estimates is
given by the inverse of the expected information matrix (Cox and Hinkley, 1974,
section 4.8). Since this matrix is not available in ASReml we replace the expected
information matrix by the AI matrix. Furthermore the REML estimates are con-
sistent and asymptotically normal, though in small samples this approximation
appears to be unreliable (see later).

A general method for comparing the fit of nested models fitted by REML is the
REML likelihood ratio test, or REMLRT. The REMLRT is only valid if the fixed
effects are the same for both models. In ASReml this requires not only the same
fixed effects model, but also the same parameterisation.

If `R2 is the REML log-likelihood of the more general model and `R1 is the REML
log-likelihood of the restricted model (that is, the REML log-likelihood under the
null hypothesis), then the REMLRT is given by

D = 2 log(`R2/`R1) = 2 [log(`R2)− log(`R1)] (2.14)

which is strictly positive. If ri is the number of parameters estimated in model
i, then the asymptotic distribution of the REMLRT, under the restricted model
is χ2

r2−r1
.

The REMLRT is implicitly two-sided, and must be adjusted when the test involves
an hypothesis with the parameter on the boundary of the parameter space. In
fact, theoretically it can be shown that for a single variance component, say,
the asymptotic distribution of the REMLRT is a mixture of χ2 variates, where
the mixing probabilities are 0.5, one with 0 degrees of freedom (spike at 0) and
the other with 1 degree of freedom. The approximate P-value for the REMLRT
statistic (D), is 0.5(1-Pr(χ2

1 ≤ d)) where d is the observed value of D. The
distribution of the REMLRT for the test that k variance components are zero, or
tests involved in random regressions, which involve both variance and covariance
components, involves a mixture of χ2 variates from 0 to k degrees of freedom.
See Self and Liang (1987) for details.

Tests concerning variance components in generally balanced designs, such as the
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balanced one-way classification, can be derived from the usual analysis of vari-
ance. It can be shown that the REMLRT for a variance component being zero is
a monotone function of the F-statistic for the associated term.

To compare two (or more) non-nested models we can evaluate the Akaike Infor-
mation Criteria (AIC) or the Bayesian Information Criteria (BIC) for each model.
These are given by

AIC = −2`Ri + 2ti

BIC = −2`Ri + ti log ν (2.15)

where ti is the number of variance parameters in model i and ν = n − p is the
residual degrees of freedom. AIC and BIC are calculated for each model and the
model with the smallest value is chosen as the preferred model.

Diagnostics

In this section we will briefly review some of the diagnostics that have been im-
plemented in ASReml for examining the adequacy of the assumed variance matrix
for either R or G structures, or for examining the distributional assumptions re-
garding e or u. Firstly we note that the BLUP of the residual vector is given
by

ẽ = y −Wβ̃

= RPy (2.16)

It follows that

E (ẽ) = 0

var (ẽ) = R−WC−1W ′

The matrix WC−1W ′ is the so-called ‘extended hat’ matrix. It is the linear
mixed effects model analogue of X(X ′X)−1X ′ for ordinary linear models. The
diagonal elements are returned in the .yht file by ASReml .

The variogram has been suggested as a useful diagnostic for assisting with the
identification of appropriate variance models for spatial data (Cressie, 1991).
Gilmour et al. (1997) demonstrate its usefulness for the identification of the
sources of variation in the analysis of field experiments. If the elements of the
data vector (and hence the residual vector) are indexed by a vector of spatial
coordinates, si, i = 1, . . . , n, then the ordinates of the sample variogram are
given by

vij =
1
2

[ẽi(si)− ẽj(sj)]
2 , i, j = 1, . . . , n; i 6= j
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The sample variogram reported by ASReml has two forms depending on whetherNew

the spatial coordinates represent a complete rectangular lattice (as typical of a
field trial) or not. In the lattice case, the sample variogram is calculated from the
triple (lij1, lij2, vij) where lij1 = si1−sj1 and lij2 = si2−sj2 are the displacements.
As there will be many vij with the same displacements, ASReml calculates the
means for each displacement pair lij1, lij2 either ignoring the signs (default) or
separately for same sign and opposite sign (!TWOWAY), after grouping the larger
displacements: 9-10, 11-14, 15-20, .... The result is displayed as a perspective
plot (see page 205) of the one or two surfaces indexed by absolute displacement
group. In this case, the two directions may be on different scales.

Otherwise ASReml forms a variogram based on polar coordinates. It calculates
the distance between points dij =

√
l2ij1 + l2ij2 and an angle θij (−180 < θij < 180)

subtended by the line from (0, 0) to (lij1, lij2) with the x-axis. The angle can be
calculated as θij = tan−1(lij1/lij2) choosing (0 < θij < 180) if lij2 > 0 and
(−180 < θij < 0) if lij2 < 0. Note that the variogram has angular symmetry
in that vij = vji, dij = dji and |θij − θji| = 180. The variogram presented
averages the vij within 12 distance classes and 4, 6 or 8 sectors (selected using
a !VGSECTORS qualifier) centred on an angle of (i − 1) ∗ 180/s (i = 1, ...s). A
figure is produced which reports the trends in v̄ij with increasing distance for
each sector.

ASReml also computes the variogram from predictors of random effects which
appear to have a variance structures defined in terms of distance. The variogram
details are reported in the .res file.

2.6 Inference: Fixed effects

Introduction

Inference for fixed effects in linear mixed models introduces some difficulties.New

In general, the methods used to construct F -tests in analysis of variance and
regression cannot be used for the diversity of applications of the general linear
mixed model available in ASReml. One approach would be to use likelihood ratio
methods (see Welham and Thompson, 1997) although their approach is not easily
implemented.

Wald-type test procedures are generally favoured for conducting tests concerning
τ . The traditional Wald statistic to test the hypothesis H0 : Lτ = l for given
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L, r × p, and l, r × 1, is given by

W = (Lτ̂ − l)′{L(X ′H−1X)−1L′}−1(Lτ̂ − l) (2.17)

and asymptotically, this statistic has a chi-square distribution on r degrees of
freedom. These are marginal tests, so that there is an adjustment for all other
terms in the fixed part of the model. It is also anti-conservative if p-values are
constructed because it assumes the variance parameters are known.

The small sample behaviour of such statistics has been considered by Kenward
and Roger (1997) in some detail. They presented a scaled Wald statistic, to-
gether with an F -approximation to its sampling distribution which they showed
performed well in a range (though limited in terms of the range of variance models
available in ASReml) of settings.

In the following we describe the facilities now available in ASReml for conducting
inference concerning terms which are the in dense fixed effects model component
of the general linear mixed model. These facilities are not available for any terms
in the sparse model. These include facilities for computing two types of Wald
statistics and partial implementation of the Kenward and Roger adjustments.

Incremental and Conditional Wald Statistics

The basic tool for inference is the Wald statistic defined in equation 2.17. ASReml
produces a test of fixed effects, that reduces to an F-statistic in special cases, by
dividing the Wald test, constructed with l = 0, by r, the numerator degrees
of freedom. In this form it is possible to perform an approximate F test if
we can deduce the denominator degrees of freedom. However, there are several
ways L can be defined to construct a test for a particular model term, two of
which are available in ASReml. For balanced designs, these Wald F-statistics
are numerically identical to the F-tests obtained from the standard analysis of
variance.

The first method for computing Wald statistics (for each term) is the so-called
“incremental” form. For this method, Wald statistics are computed from an
incremental sum of squares in the spirit of the approach used in classical regression
analysis (see Searle, 1971). For example if we consider a very simple model
with terms relating to the main effects of two qualitative factors A and B, given
symbolically by

y ∼ 1 + A + B

where the 1 represents the constant term (µ), then the incremental sums of
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squares for this model can be written as the sequence

R(1)
R(A|1) = R(1, A)−R(1)

R(B|1, A) = R(1, A,B)−R(1,A)

where the R(·) operator denotes the reduction in the total sums of squares due
to a model containing its argument and R(·|·) denotes the difference between the
reduction in the sums of squares for any pair of (nested) models. Thus R(B|1, A)
represents the difference between the reduction in sums of squares between the
so-called maximal “model”

y ∼ 1 + A + B

and
y ∼ 1 + A

Implicit in these calculations is that

• we only compute Wald statistics for estimable functions (Searle, 1971, page
408),

• all variance parameters are held fixed at the current REML estimates from the
maximal model

In this example, it is clear that the incremental Wald statistics may not produce
the desired test for the main effect of A, as in many cases we would like to produce
a Wald statistic for A based on

R(A|1, B) = R(1, A,B)−R(1,B)

The issue is further complicated when we invoke “marginality” considerations.
The issue of marginality between terms in a linear (mixed) model has been dis-
cussed in much detail by Nelder (1977). In this paper Nelder defines marginality
for terms in a factorial linear model with qualitative factors, but later Nelder
(1994) extended this concept to functional marginality for terms involving quan-
titative covariates and for mixed terms which involve an interaction between
quantitative covariates and qualitative factors. Referring to our simple illustra-
tive example above, with a full factorial linear model given symbolically by

y ∼ 1 + A + B + A.B

then A and B are said to be marginal to A.B, and 1 is marginal to A and B. In a
three way factorial model given by

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C
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the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder (1977, 1994)
argues that meaningful and interesting tests for terms in such models can only
be conducted for those tests which respect marginality relations. This philos-
ophy underpins the following description of the second Wald statistic available
in ASReml, the so-called “conditional” Wald statistic. This method is invoked
by placing !FCON on the datafile line. ASReml attempts to construct conditional
Wald statistics for each term in the fixed dense linear model so that marginality
relations are respected. As a simple example, for the three way factorial model
the conditional Wald statistics would be computed as

Term Sums of Squares M code
1 R(1) .

A R(A | 1,B,C,B.C) = R(1,A,B,C,B.C) - R(1,B,C,B.C) A

B R(B | 1,A,C,A.C) = R(1,A,B,C,A.C) - R(1,A,C,A.C) A

C R(C | 1,A,B,A.B) = R(1,A,B,C,A.B) - R(1,A,B,A.B) A

A.B R(A.B | 1,A,B,C,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.C,B.C) B

A.C R(A.C | 1,A,B,C,A.B,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,B.C) B

B.C R(B.C | 1,A,B,C,A.B,A.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,A.C) B

A.B.C R(A.B.C | 1,A,B,C,A.B,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C,A.B.C) -
R(1,A,B,C,A.B,A.C,B.C) C

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be
the same as the incremental Wald statistics produced using the linear model

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C

The preceeding table includes a so-called M (marginality) code reported by ASReml
when conditional Wald statistics are presented. All terms with the highest M code
letter are tested conditionally on all other terms in the model, i.e. by dropping
the term from the maximum model. All terms with the preceeding M code letter,
are marginal to at least one term in a higher group, and so forth. For example,
in the table, model term A.B has M code B because it is marginal to model term
A.B.C and model term A has M code A because it is marginal to A.B, A.C and
A.B.C. Model term mu (M code .) is a special case in that its test is conditional
on all covariates but no factors. Following is some ASReml output from the .aov
table which reports the terms in the conditional statistics.

Marginality pattern for F-con calculation
-- Model terms --

Model Term DF 1 2 3 4 5 6 7 8

1 mu 1 * . . . . . . .
2 water 1 I * C C . . c .
3 variety 7 I I * C . c . .
4 sow 2 I I I * C . . .
5 water.variety 7 I I I I * C C .
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6 water.sow 2 I I I I I * C .
7 variety.sow 14 I I I I I I * .
8 water.variety.sow 14 I I I I I I I *

F-inc tests the additional variation explained when the term (*) is added to a
model consisting of the I terms. F-con tests the additional variation explained
when the term (*) is added to a model consisting of the I and C/c terms. Any
c terms are ignored in calculating DenDF for F-con using numerical derivatives
for computational reasons. The . terms are ignored for both F-inc and F-con
tests.

Consider now a nested model which might be represented symbolically by

y ∼ 1 + REGION + REGION.SITE

For this model, the incremental and conditional Wald tests will be the same.
However, it is not uncommon for this model to be presented to ASReml as

y ∼ 1 + REGION + SITE

with SITE identified across REGION rather than within REGION. Then the nested
structure is hidden but ASReml will still detect the structure and produce a valid
conditional Wald F-statistic. This situation will be flagged in the M code field by
changing the letter to lower case. Thus, in the nested model, the three M codes
would be ., A and B because REGION.SITE is obviously an interaction dependent
on REGION. In the second model, REGION and SITE appear to be independent
factors so the initial M codes are ., A and A. However they are not independent
because REGION removes additional degrees of freedom from SITE, so the M codes
are changed from ., A and A to ., a and A.

We strongly recommend, if you are in any doubt about the “maximal conditional”
model (MCM) for the conditional Wald F-statistic, that you consult the .aov file
which spells out the “maximal conditional” model for each term. We also advise
users that the aim of the conditional Wald statistic is to facilitate inference for
fixed effects. It is not meant to be prescriptive nor is it foolproof for every setting.

The Wald statistics are collectively presented in a summary table in the .asr
file. The basic table includes the numerator degrees of freedom (ν1i) and the
incremental Wald F-statistic for each term. To this is added the conditional
Wald F-statistic and the M code if !FCON is specified. A conditional F-statistic is
not reported for mu in the .asr but is in the .aov file (adjusted for covariates).
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Kenward and Roger Adjustments

In moderately sized analyses, ASReml will also include the denominator degrees
of freedom (DenDF, denoted by ν2i, Kenward and Roger, 1997) and a probablity
value if these can be computed. They will be for the conditional Wald F-statistic
if it is reported. The !DDF i (see page 68) qualifier can be used to suppress the
DenDF calculation (!DDF -1) or request a particular algorithmic method: !DDF
1 for numerical derivatives, !DDF 2 for algebraic derivatives. The value in the
probability column (either P inc or P con) is computed from an Fν1i,ν2i reference
distribution. An approximation is used for computational convenience when cal-
culating the DenDF for Conditional F statistics using numerical derivatives. The
DenDF reported then relates to a maximal conditional incremental model (MCIM)
which, depending on the model order, may not always coincide with the max-
imal conditional model (MCM) under which the conditional F statistic is cal-
culated. The MCIM model omits terms fitted after any terms ignored for the
conditional test (I after . in marginality pattern). In the example above, MCIM
ignores variety.sow when calculating DenDF for the test of water and ignores
water.sow when calculating DenDF for the test of variety. When DenDF is not
available, it is often possible, though anti-conservative to use the residual degrees
of freedom for the denominator.

Kenward and Roger (1997) pursued the concept of construction of Wald-type test
statistics through an adjusted variance matrix of τ̂ . They argued that it is useful
to consider an improved estimator of the variance matrix of τ̂ which has less bias
and accounts for the variability in estimation of the variance parameters. There
are two reasons for this. Firstly, the small sample distribution of Wald tests is
simplified when the adjusted variance matrix is used. Secondly, if measures of
precision are required for τ̂ or effects therein, those obtained from the adjusted
variance matrix will generally be preferred. Unfortunately the Wald statistics are
currently computed using an unadjusted variance matrix.

Approximate stratum variances

ASReml reports approximate stratum variances and degrees of freedom for sim-
ple variance components models. For the linear mixed-effects model with vari-
ance components (setting σ2

H
= 1) where G = ⊕q

j=1γjIbj , it is often possible
to consider a natural ordering of the variance component parameters including
σ2. Based on an idea due to Thompson (1980), ASReml computes approximate
stratum degrees of freedom and stratum variances by a modified Cholesky diag-
onalisation of the average information matrix. That is, if F is the average infor-
mation matrix for σ, let U be an upper triangular matrix such that F = U ′U .
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We define
U c = DcU

where Dc is a diagonal matrix whose elements are given by the inverse elements
of the last column of U ie dcii = 1/uir, i = 1, . . . , r. The matrix U c is therefore
upper triangular with the elements in the last column equal to one. If the vector
σ is ordered in the “natural” way, with σ2 being the last element, then we can
define the vector of so called “pseudo” stratum variance components by

ξ = U cσ

Thence
var (ξ) = D2

c

The diagonal elements can be manipulated to produce effective stratum degrees
of freedom Thompson (1980) viz

νi = 2ξ2
i /d2

cii

In this way the closeness to an orthogonal block structure can be assessed.
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3.1 Introduction

This chapter presents a guided tour of ASReml, from data file preparation and
basic aspects of the ASReml command file, to running an ASReml job and inter-
preting the output files. You are encouraged to read this chapter before moving
to the later chapters;

• a real data example is used in this chapter for demonstration, see below,

• the same data are also used in later chapters,

• links to the formal discussion of topics are clearly signposted by margin notes.

Note that some aspects of ASReml, in particular, pedigree files (see Chapter 9)
and multivariate analysis (see Chapter 8) are only covered in later chapters.

ASReml is essentially a batch program with some optional interactive features.
The typical sequence of operations when using ASReml is

• Prepare the data (typically using a spreadsheet or data base program)

• Export that data as an ASCII file (for example export it as a .csv (comma
separated values) file from Excel)

• Prepare a job file with filename extension .as.

• Run the job file with ASReml

• Review the various output files

• revise the job and re run it, or

• extract pertinant results for your report.

You will need a file editor to create the command file and to view the various
output files. On unix systems, vi and emacs are commonly used. Under Win-
dows, there are several suitable program editors available such as ASReml-W and
ConText described in section 1.3.New

3.2 Nebraska Intrastate Nursery (NIN) field experiment

The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding
trial conducted at Alliance in 1988/89 will be used for demonstration, see Stroup
et al. (1994) for details. Four replicates of 19 released cultivars, 35 experimen-
tal wheat lines and 2 additional triticale lines were laid out in a 22 row by 11
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column rectangular array of plots; the varieties were allocated to the plots using
a randomised complete block (RCB) design. In field trials, complete replicates
are typically allocated to consecutive groups of whole columns or rows. In this
trial the replicates were not allocated to groups of whole columns, but rather,
overlapped columns. Table 3.1 gives the allocation of varieties to plots in field
plan order with replicates 1 and 3 in ITALICS and replicates 2 and 4 in BOLD.

3.3 The ASReml data file

The standard format of an ASReml data file is to have the data arranged inSee Chapter 4

for details space, TAB or comma separated columns/fields with a line for each sampling
unit. The columns contain covariates, factors, response variates (traits) and
weight variables in any convenient order. This is the first 30 lines of the file
nin89.asd containing the data for the NIN variety trial. The data are in field
order (rows within columns) and an optional heading (first line of the file) has
been included to document the file. In this case there are 11 space separated data
fields (variety. . . column) and the complete file has 224 data lines, one for each
variety in each replicate.

variety id pid raw repl nloc yield lat long row column

LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1

BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1

REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1

CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1

ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1

NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1

NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1

NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2

CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2

SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2

COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2

NE83498 12 1112 492 1 4 24.6 8.6 6 5 2

NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2

NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2

NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2

NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2

CENTURAK78 17 1117 632 1 4 31.6 8.6 12 10 2

NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2

KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2
...

optional field labels
data line sampling unit 1
data line sampling unit 2

.

.

.

Note that in Chapter 7 these data are analysed using spatial methods of analysis,
see model 3a in Section 7.3. For spatial analysis using a separable error structure
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(see Chapter 2) the data file must first be augmented to specify the complete 22
row × 11 column array of plots. These are the first 20 lines of the augmented
data file nin89aug.asd with 242 data rows.

variety id pid raw repl nloc yield lat long row column

LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1

LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1

LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1

LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1

LANCER 1 NA NA 1 4 NA 4.3 6 5 1

LANCER 1 NA NA 1 4 NA 4.3 7.2 6 1

LANCER 1 NA NA 1 4 NA 4.3 8.4 7 1

LANCER 1 NA NA 1 4 NA 4.3 9.6 8 1

LANCER 1 NA NA 1 4 NA 4.3 10.8 9 1

LANCER 1 NA NA 1 4 NA 4.3 12 10 1

LANCER 1 NA NA 1 4 NA 4.3 13.2 11 1

LANCER 1 NA NA 1 4 NA 4.3 14.4 12 1

LANCER 1 NA NA 1 4 NA 4.3 15.6 13 1

LANCER 1 NA NA 1 4 NA 4.3 16.8 14 1

LANCER 1 NA NA 1 4 NA 4.3 18 15 1

LANCER 1 NA NA 2 4 NA 17.2 7.2 6 4

LANCER 1 NA NA 3 4 NA 25.8 22.8 19 6

LANCER 1 NA NA 4 4 NA 38.7 12.0 10 9

LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1

BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1

REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1

CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
...

optional field labels
file augmented by
missing values for first
15 plots and 3 buffer
plots and variety coded
LANCER to complete
22×11 array
.
.
.

buffer plots
between reps

original data
.
.
.

Note that

• the pid, raw, repl and yield data for the missing plots have all been made
NA (one of the three missing value indicators in ASReml, see Section 4.2),

• variety is coded LANCER for all missing plots; one of the variety names must
be used but the particular choice is arbitrary.

3.4 The ASReml command file

By convention an ASReml command file has a .as extension. The file definesSee Chapters 5,

6 and 7 for de-

tails
• a title line to describe the job,

• labels for the data fields in the data file and the name of the data file,

• the linear mixed model and the variance model(s) if required,

• output options including directives for tabulation and prediction.
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Below is the ASReml command file for an RCB analysis of the NIN field trial data
highlighting the main sections. Note the order of the main sections.

title line −→
data field definition−→

.

.

.

data field definition −→
data file name and qualifiers−→

tabulate statement−→
linear mixed model definition−→

predict statement−→
variance model specification−→

.

.

NIN Alliance trial 1989

variety !A

id

pid

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

The title line

NIN Alliance trial 1989

variety !A

id
...

The first non-blank line in an ASReml com-
mand file is taken as the title for the job and
is used to identify the analysis for future ref-
erence.

Reading the data

NIN Alliance trial 1989

variety !A

id

pid

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nin89.asd !skip 1
...

The data fields are defined before the data file
name is specified. Field definitions must be
given for all fields in the data file and in the
order in which they appear in the data file.
Data field definitions must be indented.
In this case there are 11 data fields (variety
. . . column) in nin89.asd, see Section 3.3.

The !A after variety tells ASReml that the
first field is alphanumeric and the 4 after repl
tells ASReml that the field called repl (the
fifth field read) is a numeric factor with 4 lev-
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els. Similarly for row and column. The other
data fields include variates (yield) and various other variables.

The data file line

NIN Alliance trial 1989

variety !A

id

pid
...

row 22

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

The data file name is specified immediately
after the last data field definition. Data file
qualifiers that relate to data input and output
are also placed on this line if they are required.
In this example, !skip 1 tells ASReml to readSee Section 5.7

the data from nin89.asd but to ignore the
first line in this file, the line containing the
field labels.

The data file line can also contain qualifiersSee Section 5.8

that control other aspects of the analysis.
These qualifiers are presented in Section 5.8.

Tabulation

...

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety
...

Tabulate statements provide a simple way ofSee Chapter 10

exploring the structure of a data file. They ap-
pear immediately before (or after) the model
line. In this case the 56 simple variety means
for yield are formed and written to a .tab
output file. See Chapter 10 for a discussion of
tabulation.

Specifying the terms in the mixed model

NIN Alliance trial 1989

variety !A
...

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

The linear mixed model is specified as a list ofSee Chapter 6

model terms and qualifiers. All elements must
be space separated. ASReml accommodates a
wide range of analyses. See Section 2.1 for a
brief discussion and general algebraic formu-
lation of the linear mixed model. The model
specified here for the NIN data is a simple ran-
dom effects RCB model including fixed vari-
ety effects and random replicate effects. The
reserved word mu fits a constant term (inter-
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cept), variety fits a fixed variety effect and repl fits a random replicate effect.
The !r qualifier tells ASReml to fit the terms that appear after this qualifier as
random effects.

Prediction

NIN Alliance trial 1989

variety !A
...

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

Prediction statements appear after the modelSee Chapter 10

statement and before any variance structure
lines. In this case the 56 variety means for
yield would be formed and returned in the
.pvs output file. See Chapter 10 for a de-
tailed discussion of prediction in ASReml.

Variance structures

NIN Alliance trial 1989

variety !A
...

column 11

nin89.asd !skip 1

tabulate yield ∼ variety

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

The last three lines are included for exposi-
tory purposes and are not actually needed for
this analysis. An extensive range of varianceSee Chapter 7

structures can be fitted in ASReml. See Chap-
ter 7 for a lengthy discussion of variance mod-
elling in ASReml. In this case independent
and identically distributed random replicate
effects are specified using the identifier IDV in
a G structure. G structures are described in
Section 2.1 and the list of available variance
structures/models is presented in Table 7.3. Since IDV is the default variance
structure for random effects, the same analysis would be performed if these lines
were omitted.

3.5 Running the job

An ASReml job is often run from a command line. The basic command to runSee Chapter 12

an ASReml job is normally

asreml basename[.as]

where basename[.as] is the name of the command file. For example, the com-
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mand to run nin89.as is

asreml nin89.as

However, if the path to ASReml is not specified in your system’s Path envi-
ronment variable, a path to this program must also be given. In this case the
command to run the ASReml job in a PC/Windows environment is

[path]asreml basename[.as]

where path is typically C:\Program Files\ASReml2\bin\ pointing to the location
of the ASReml program. In this guide we assume the command file has a filenameMake a habit of

giving command

files the .as ex-

tension

extension .as. ASReml also recognises the filename extension .asc as an ASReml

command file. When these are used, the extension (.as or .asc) may be omitted
from basename.as in the command line if there is no file in the working directory
with the name basename. The options and arguments that can be supplied on
the command line to modify a job at run time are described in Chapter 12.

Forming a job template

Notice that the data files nin89.asd and nin89aug.asd commenced with a lineNew

of column headings. Since these headings do not contain embedded blanks, we
can use ASReml to make a template for the .as file by running ASReml with the
datafile as the command argument (see Chapter 12). For example, running the
command

asreml nin89aug.asd

writes a file nin89aug.as (if it does not already exist) which looks like

Title: nin89aug.

#variety id pid raw rep nloc yield lat long row column

#LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1

#LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1

#LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1

#LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1

variety !A

id *

pid

raw

rep *

nloc *

yield

lat

long

row *

column *

# Check/Correct these field definitions.

nin89aug.asd !SKIP 1



3 A guided tour 35

column ~ mu , # Specify fixed model

!r # Specify random model

# 1 2 0

# column column AR1 0.1

# row row AR1 0.1

This is a template in that it needs editing (it has nominated an inappropriate
response variable) but it displays the first few lines of the data and infers whether
fields are factors or variates as follows: Missing fields and those with decimal
points in the data value are taken as covariates, integer fields are taken as simple
factors (*) and alphanumeric fields are taken as !A factors.

3.6 Description of output files

A series of output files are produced with each ASReml run. Running the exam-
ple as above, the primary output is written to nin89.asr. This file contains a
summary of the data, the iteration sequence, estimates of the variance parame-
ters and an analysis of variance (ANOVA) table. The estimates of all the fixed
and random effects are written to nin89.sln. The residuals, predicted values of
the observations and the diagonal elements of the hat matrix (see Chapter 2) are
returned in nin89.yht, see Section 13.3. Other files produced by this job include
the .aov, .pvs, .res, .tab, .vvp and .veo files, see Section 13.4.

The .asr file

Below is nin89.asr with pointers to the main sections. The first line gives the
version of ASReml used (in square brackets) and the title of the job. The second
line gives the build date for the program and indicates whether it is a 32bit or
64bit version. The third line gives the date and time that the job was run and
reports the size of the workspace. The general announcements box (outlined in
asterisks) at the top of the file notifies the user of current release features. The
remaining lines report a data summary, the iteration sequence, the estimated
variance parameters and an ANOVA table. The final line gives the date and time
that the job was completed and a statement about convergence.

ASReml 1.63o [01 Jun 2005] NIN alliance trial 1989job heading

Build: j [01 Jul 2005] 32 bit

11 Jul 2005 13:55:21.504 32.00 Mbyte Windows nin89

Licensed to: Arthur Gilmournotices

***********************************************************
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* SYNTAX change: A/B now means A A.B *

* *

* Contact support@asreml.co.uk for licensing and support *

***************************************************** ARG *

Folder: C:\data\asr\UG2\manex

variety !A

QUALIFIERS: !SKIP 1

Reading nin89.asd FREE FORMAT skipping 1 linesdata summary

Univariate analysis of yield

Using 224 records of 224 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 28.5000 56

2 id 0 0 1.000 28.50 56.00

3 pid 0 0 1101. 2628. 4156.

4 raw 0 0 21.00 510.5 840.0

5 repl 4 0 0 1 2.5000 4

6 nloc 0 0 4.000 4.000 4.000

7 yield Variate 0 0 1.050 25.53 42.00

8 lat 0 0 4.300 27.22 47.30

9 long 0 0 1.200 14.08 26.40

10 row 22 0 0 1 11.7321 22

11 column 11 0 0 1 6.3304 11

12 mu 1

4 identity 0.1000

Structure for repl has 4 levels defined

Forming 61 equations: 57 dense.

Initial updates will be shrunk by factor 0.316

NOTICE: 1 singularities detected in design matrix.

1 LogL=-454.807 S2= 50.329 168 df 1.000 0.1000iteration

2 LogL=-454.663 S2= 50.120 168 df 1.000 0.1173sequence

3 LogL=-454.532 S2= 49.868 168 df 1.000 0.1463

4 LogL=-454.472 S2= 49.637 168 df 1.000 0.1866

5 LogL=-454.469 S2= 49.585 168 df 1.000 0.1986

6 LogL=-454.469 S2= 49.582 168 df 1.000 0.1993

7 LogL=-454.469 S2= 49.582 168 df 1.000 0.1993

Final parameter values 1.0000 0.19932

Source Model terms Gamma Component Comp/SE % C
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Variance 224 168 1.00000 49.5824 9.08 0 Pparameter

repl identity 4 0.199323 9.88291 1.12 0 Uestimates

Analysis of Variance NumDF DenDF F_inc ProbANOVA

12 mu 1 3.0 242.05 <.001

1 variety 55 165.0 0.88 0.708

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

5 repl 4 effects fitted

Finished: 11 Jul 2005 13:55:25.309 LogL Converged

The .sln file

The following is an extract from nin89.sln containing the estimated variety
effects, intercept and random replicate effects in this order (column 3) with stan-
dard errors (column 4). Note that the variety effects are returned in the order of
their first appearance in the data file, see replicate 1 in Table 3.1.

variety LANCER 0.000 0.000

variety BRULE -2.487 4.979

variety REDLAND 1.938 4.979

variety CODY -7.350 4.979

variety ARAPAHOE 0.8750 4.979

variety NE83404 -1.175 4.979

variety NE83406 -4.287 4.979

variety NE83407 -5.875 4.979

variety CENTURA -6.912 4.979

variety SCOUT66 -1.037 4.979

variety COLT -1.562 4.979

variety NE83498 1.563 4.979

variety NE84557 -8.037 4.979

variety NE83432 -8.837 4.979
...

variety NE87615 -2.875 4.979

variety NE87619 2.700 4.979

variety NE87627 -5.337 4.979

mu 1 28.56 3.856

repl 1 1.880 1.755

repl 2 2.843 1.755
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repl 3 -0.8713 1.755

repl 4 -3.852 1.755

The .yht file

The following is an extract from nin89.yht containing the predicted values of
the observations (column 2), the residuals (column 3) and the diagonal elements
of the hat matrix. This final column can be used in tests involving the residuals,
see Section 2.5 under Diagnostics.

Record Yhat Residual Hat

1 30.442 -1.192 13.01

2 27.955 3.595 13.01

3 32.380 2.670 13.01

4 23.092 7.008 13.01

5 31.317 1.733 13.01

6 29.267 0.9829 13.01

7 26.155 9.045 13.01

8 24.567 -5.167 13.01

9 23.530 0.8204 13.01
...

222 16.673 9.877 13.01

223 24.548 1.052 13.01

224 23.786 3.114 13.01

3.7 Tabulation, predicted values and functions of the variance com-
ponents

It may take several runs of ASReml to determine an appropriate model for the
data, that is, the fixed and random effects that are important. During this
process you may wish to explore the data by simple tabulation. Having identified
an appropriate model, you may then wish to form predicted values or functions
of the variance components. The facilities in ASReml to form predicted values
and functions of the variance components are described in Chapters 10 and 11
respectively. Our example only includes tabulation and prediction.

The statement

tabulate yield ∼ variety
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in nin89.as results in nin89.tab as follows:

NIN alliance trial 1989 11 Jul 2005 13:55:21

Simple tabulation of yield

variety

LANCER 28.56

BRULE 26.07

REDLAND 30.50

CODY 21.21

ARAPAHOE 29.44

NE83404 27.39

NE83406 24.28

NE83407 22.69

CENTURA 21.65

SCOUT66 27.52

COLT 27.00
...

NE87522 25.00

NE87612 21.80

NE87613 29.40

NE87615 25.69

NE87619 31.26

NE87627 23.23

The

predict variety

statement after the model statement in nin89.as results in the nin89.pvs file
displayed below (some output omitted) containing the 56 predicted variety means,
also in the order in which they first appear in the data file (column 2), together
with standard errors (column 3). An average standard error of difference among
the predicted variety means is displayed immediately after the list of predicted
values. As in the .asr file, date, time and trial information are given the title line.
The Ecode for each prediction (column 4) is usually E indicating the prediction is
of an estimable function. Predictions of non-estimable functions are usually not
printed, see Chapter 10.
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nin alliance trial 11 Jul 2005 13:55:21title line

nin893

Ecode is E for Estimable, * for Not Estimable

---- ---- ---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ---- ----

Predicted values of yield

repl is ignored in the prediction (except where specifically included

variety Predicted_Value Standard_Error Ecode

LANCER 28.5625 3.8557 Epredicted variety
effects BRULE 26.0750 3.8557 E

REDLAND 30.5000 3.8557 E

CODY 21.2125 3.8557 E

ARAPAHOE 29.4375 3.8557 E

NE83404 27.3875 3.8557 E

NE83406 24.2750 3.8557 E

NE83407 22.6875 3.8557 E

CENTURA 21.6500 3.8557 E

SCOUT66 27.5250 3.8557 E

COLT 27.0000 3.8557 E
...

NE87613 29.4000 3.8557 E

NE87615 25.6875 3.8557 E

NE87619 31.2625 3.8557 E

NE87627 23.2250 3.8557 E

SED: Overall Standard Error of Difference 4.979
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4.1 Introduction

The first step in an ASReml analysis is to prepare the data file. Data file prepara-
tion is described in this chapter using the NIN example of Chapter 3 for demon-
stration. The first 25 lines of the data file are as follows:

variety id pid raw repl nloc yield lat long row column

BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1

REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1

CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1

ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1

NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1

NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1

NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2

CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2

SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2

COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2

NE83498 12 1112 492 1 4 24.6 8.6 6 5 2

NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2

NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2

NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2

NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2

CENTURK78 17 1117 632 1 4 31.6 8.6 12 10 2

NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2

KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2

TAM200 20 1120 422 1 4 21.1 8.6 15.6 13 2

NE86482 21 1121 560 1 4 28 8.6 16.8 14 2

HOMESTEAD 22 1122 566 1 4 28.3 8.6 18 15 2

LANCOTA 23 1123 514 1 4 25.7 8.6 19.2 16 2

NE86501 24 1124 635 1 4 31.75 8.6 20.4 17 2

NE86503 25 1125 840 1 4 42 8.6 21.6 18 2
...

4.2 The data file

The standard format of an ASReml data file is to have the data arranged in
columns/fields with a single line for each sampling unit. The columns contain
variates and covariates (numeric), factors (alphanumeric), traits (response vari-
ables) and weight variables in any order that is convenient to the user. The data
file may be free format, fixed format or a binary file.

Free format data files

The data are read free format (space, comma or tab separated) unless the file
name has extension .bin for real binary, or .dbl for double precision binary (see
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below). Important points to note are as follows:

• files prepared in Excel must be converted to comma or tab-delimited form.

• blank lines are ignored,

• column headings, field labels or comments may be present at the top of the
file provided that the !skip qualifier (Table 5.2) is used to skip over them,

• NA,* and . are treated as coding for missing values in free format data files;

– if missing values are coded with a unique data value (for example, 0 or -9),
use !M to flag them as missing or !D to drop the data record containing
them (see Table 5.1),

• comma delimited files whose file name ends in .csv or for which the !CSV
qualifier is set recognise empty fields as missing values,

– a line beginning with a comma implies a preceding missing value,
– consecutive commas imply a missing value,
– a line ending with a comma implies a trailing missing value,
– if the filename does not end in .csv or the !CSV qualifier is not set, commas

are treated as white space,

• characters following # on a line are ignored so this character may not be used
in alphanumeric fields,

• blank spaces, tabs and commas must not be used (embedded) in alphanumeric
fields unless the label is enclosed in quotes, for example, the name Willow
Creek would need to be appear in the data file as ‘Willow Creek’ to avoid
error,

• the $ symbol must not be used in the data file,

• alphanumeric fields have a default size of 16 characters. Use the !LL qualifier
to extend the size of factor labels stored.New

• extra data fields on a line are ignored,

• if there are fewer data items on a line than ASReml expects the remainder are
taken from the following line(s) except in .csv files were they are taken as
missing. If you end up with half the number of records you expected, this is
probably the reason,

• all lines beginning with ! followed by a blank are copied to the .asr file as
comments for the output; their contents are ignored,

• a data file line may not exceed 2000 characters; if the data fields will not fit inNew

2000 characters, put some on the next line.
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Fixed format data files

The format must be supplied with the !FORMAT qualifier which is described in
(Table 5.5). However, if all fields are present and are separated, the file can be
read free format.

Preparing data files in Excel

Many users find it convenient to prepare their data in Excel or Access. How-
ever, the data must be exported from these programs into either .csv (Comma
separated values) or .txt (TAB separated values) form for ASReml to read it.
ASReml can convert an .xls file to a .csv file. When ASReml is invoked with an
.xls file as the filename argument and there is no .csv file or .as with the same
basename, it exports the first sheet as a .csv file and then generates a template
.as command file from any column headings it finds (see page 178). It will also
convert a Genstat .gsh spreadsheet file to .csv format. The data extracted from
the .xls file are labels, numerical values and the results from formulae. Empty
rows at the start and end of a block are trimmed, but empty rows in the middle
of a block are kept. Empty columns are ignored. A single row of labels as the first
non-empty row in the block will be taken as column names. Empty cells in this
row will have default names C1, C2 etc. assigned. Missing values are commonly
represented in ASReml data files by NA, * or .. ASReml will also recognise empty
fields as missing values in .csv (.xls) files.

Binary format data files

Conventions for binary files are as follows:

• binary files are read as unformatted Fortran binary in single precision if the
filename has a .bin or .BIN extension,

• Fortran binary data files are read in double precision if the filename has a .dbl
or .DBL extension,

• ASReml recognises the value -1e37 as a missing value in binary files,

• Fortran binary in the above means all real (.bin) or all double precision (.dbl)
variables; mixed types, that is, integer and alphabetic binary representation of
variables is not allowed in binary files,

• binary files can only be used in conjunction with a pedigree file if the pedigree
fields are coded in the binary file so that they correspond with the pedigree file
(this can be done using the !SAVE option in ASReml to form the binary file,
see Table 5.5), or the identifiers are whole numbers less than 9,999,999 and the
!RECODE qualifier is specified (see Table 5.5).
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5.1 Introduction

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety

1 2

11 column AR1 .424

22 row AR1 .904

In the code box to the right is the ASReml

command file nin89a.as for a spatial analysis
of the Nebraska Intrastate Nursery (NIN) field
experiment introduced Chapter 3. The lines
that are highlighted in bold/blue type relate
to reading in the data. In this chapter we use
this example to discuss reading in the data in
detail.

5.2 Important rules

In the ASReml command file

• all characters following a # symbol on a line are ignored,

• all blank lines are ignored,

• lines beginning with ! followed by a blank are copied to the .asr file as
comments for the output,

• a blank is the usual separator; tab is also a separator,

• maximum line length is 2000 characters,New

• a comma as the last character on the line is used to indicate that the current
list is continued on the next line; a comma is not needed when ASReml knows
how many values to read,

• reserved words used in specifying the linear model (Table 6.1) are case sensitive;
they need to be typed exactly as defined: they may not be abbreviated.

• a qualifier is a particular letter sequence beginning with an ! which sets an
option or changes some aspect of ASReml;

– some qualifiers require arguments,
– qualifiers must appear on the correct line,
– qualifier identifiers are not case sensitive,
– qualifier identifiers may be truncated to 3 characters.
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5.3 Title line

The first 40 characters of the first nonblank
line in an ASReml command file are taken as
a title for the job. Use this to identify the
analysis for future reference.

NIN Alliance Trial 1989

variety !A

id

pid
...

5.4 Specifying and reading the data

Typically, a data record consists of all the information pertaining to an experi-
mental unit (plot, animal, assessment). We distinguish the fields which exist in
the data file and are read into ASReml from the fields that are saved in ASReml

and are available for analysis. They coincide only if no transformations are per-
formed. Similarly, we sometimes discard some records so that there are fewer
records available for analysis than appear in the data file.

The data fields to be saved for analysis are defined immediately after the job
title. The definitions control how each field in the data file is handled as it is
read into ASReml. ASReml deduces how many of them are read from the data file
from the associated transformation information (override with the !READ qualifier
described in Table 5.5). No more than 1000 variables may be read or formed.

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety
...

Data field definitions

• should be given for all fields in the data file;
fields (on the end of a data line) without
a field definition are ignored; if there are
not enough data fields on a data line, the
remainder are taken from the next line(s),

• must be presented in the order in which
they appear in the data file,

• must be indented one or more spaces,Important

• can appear with other definitions on the
same line,

• Data fields can be transformed (see below):

– transformation qualifiers should be listed after the data field labels for the
fields being modified/created.

– additional data fields can be created by transformation qualifiers.
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Data field definition syntax

Data field definitions appear in the ASReml command file in the form

space label [field type ] [transformations ]

• space

– is a required space

• label

– is an alphanumeric string to identify the field,
– has a maximum of 31 characters of which only 20 are printed; the remaining

characters are not displayed,
– must begin with a letter,
– must not contain the special characters ., *, :, /, !, #, — or ( ,
– reserved words (Table 6.1 and Table 7.3) must not be used,

• field type defines how a variable is interpreted if specified in the linear model,

– for a variate, leave field type blank or specify 1,
– for a model factor, various qualifiers are required depending on the form of

the factor coding where n is the number of levels of the factor and s is a list
of labels to be assigned to the levels:

* or n is used when the data field has values 1. . .n directly coding for
the factor unless the levels are to be labelled (see !L),

!A [n] is required if the data field is alphanumeric,
!I [n] is required if the data is numeric but not 1. . .n; !I must be

followed by n if more than 1000 codes are present,
!L s is used when the data field is numeric with values 1. . .n and

labels are to be assigned to the n levels, for example
Sex !L Male Female
If there are many labels, they may be written over several lines
by using a trailing comma to indicate continuation of the list.

!P indicates the special case of a pedigree factor; ASReml will de-
termine the levels from the pedigree file, see Section 9.3,

A warning is printed if the nominated value for n does not agree with the
actual number of levels found in the data and if the nominated value is too
small the correct value is used.

– !DATE specifies the field has one of the date formats dd/mm/yy, dd/mm/ccyy,New

dd-Mon-yy, dd-Mon-ccyy and is to be converted into a Julian day where dd is
a 1 or 2 digit day of the month, mm is a 1 or 2 digit month of the year, Mon is
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a three letter month name (Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec), yy is the year within the century (00 to 99), cc is the century (19
or 20). The separators ’/’ and ’-’ must be present as indicated. The dates
are converted to days starting 1 Jan 1900. When the century is not specified,
yy of 0-32 is taken as 2000-2032, 33-99 taken as 1933-1999.

– !DMY specifies the field has one of the date formats dd/mm/yy or dd/mm/ccyyNew

and is to be converted into a Julian day.
– !MDY specifies the field has one of the date formats mm/dd/yy or mm/dd/ccyyNew

and is to be converted into a Julian day.
– !TIME specifies the field has the time format hh:mm:ss. and is to be con-New

verted to seconds past midnight where hh is hours (0 to 23), mm is minutes
(0-59) and ss is seconds (0 to 59). The separator ’:’ must be present.

– for a group of m variates
!G m is used when m contiguous data fields are to be

treated as a factor or group of variates. For example
longhand
...
X1 X2 X3 X4 X5 y
data.dat
y ∼ mu X1 X2 X3 X4 X5

shorthand
...
X !G 5 y
data.dat
y ∼ mu X

so that the 5 variates can be referred to in the model as X by
using X !G 5

• transformations

– see below

Storage of alphabetic factor labels

Space is allocated dynamically for the storage of alphabetic factor labels with aNew

default allocation being 2000 labels of 16 characters long. If there are large !A
factors (so that the total across all factors will exceed 2000), you must specify
the anticipated size (within say 5%). If some labels are longer then 16 characters
and the extra characters are significant, you must lengthen the space for each
label by specifying !LL c e.g.

cross !A 2300 !LL 48
indicates the factor cross has about 2300 levels and needs 48 characters to hold
the level names although only the first 20 characters of the names are ever printed.

!PRUNE on a field definition line means that if fewer levels are actually presentNew
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in the factor than were declared, ASReml will reduce the factor size to the
actual number of levels. Use !PRUNALL for this action to be taken on the current
and subsequent factors up to (but not including) a factor with the !PRUNEOFF
qualifier. The user may overestimate the size for large ALPHA and INTEGER
coded factors so that ASReml reserves enough space for the list. Using !PRUNE
will mean the extra (undefined) levels will not appear in the .sln file. Since it
is sometimes necessary that factors not be pruned in this way, for example in
pedigree/GIV factors, pruning is only done if requested.

Reordering the factor levels

!SORT declared after !A or !I on a field definition line will cause ASReml to sortNew

the levels so that labels occur in alphabetic/numeric order for the analysis. By
default, ASReml orders factor levels in the order they appear in the data so that
for example, the user cannot tell whether SEX will be coded 1=Male, 2=Female
or 1=Female, 2=Male without looking at the data file to see whether Male or
Female appears first in the SEX field. With the !SORT qualifier, the coding will
be 1=Female, 2=Male regardless of which appears first in the file.

!SORTALL means that the levels for the current and subsequent factors are to be
sorted.

Skipping input fields

!SKIP f will skip f data fields BEFORE reading this field. It is particularly usefulNew

in large files with alphabetic fields which are not needed as it saves ASReml the
time required to classify the alphabetic labels. For example

Sire !I !skip 1
would skip the field before the field which is read as ’Sire’.

5.5 Transforming the data

Transformation is the process of modifying the data (for example, dividing all
of the data values in a field by 10), deriving new forms of the data for analysis
(for example, summing the data in two fields) or creating temporary data (for
example, a test variable used immediately to discard some records from analysis).
Occasional users may find it easier to use a spreadsheet to calculate derived
variables than to modify variables using ASReml transformations.
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Transformation qualifiers are listed after data field labels. They define an op-
eration (e.g. +), often involving an argument (a constant or another variable),
which is performed on a target variable. The target is usually implicit but can be
changed to a new variable. Note that
• there may be up to 1000 variables and these are internally labeled V1, V2 · · ·
V1000,

• values from the data file are read into the leading variables,

• alpha (!A), integer (!I), pedigree (!P) and date (!DATE) fields are converted
to real numbers (level codes) as they are read and before any transformations
are applied,

• transformations may be applied to any variable (since every variable is nu-
meric), but it may not be sensible to change factor level codes,

• transformations are performed in the order of appearance for each record in
turn,

• after completing the transformations for each record, the values in the record
for variables associated with a label are held for analysis, (or the record (all
values) is discarded; see !D transformation and Section 6.10),

Thus variables form three classes: those read from the data file (possibly modified,
normally labelled and available for subsequent use in analysis), those created and
labelled (available for subsequent use in the analysis) and those created but not
labelled (intermediate calculations not required for subsequent analysis).

The first variables contain the values read from the data file for each record.
The number of variables read can be explicitly set using the !READ qualifier
described in Table 5.5. Otherwise ASReml reads values from the data file for
each variable/factor defined unless the variable/factor and all subsequent labelled
variables are created (using transformations). For example,

A B C !=A !-B
reads two fields (A and B), and constructs C as A-B. All three are available for
analysis.

Variables that have an explicit label, may be referenced by their explicit label or
their internal label. Therefore, to avoid confusion, do not use explicit labels of the
form Vi, where i is a number, for variables to be referred to in a transformation.
Vi always refers to field/variable i in a transformation statement.

Variables that are not initialized from the data file, are initialized to missing
value for the first record, and otherwise, to the values from the preceding record
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(after transformation). Thus
A B LagA !=V4 !V4=A

reads two fields (A and B), and constructs LagA as the value of A from the previous
record by extracting a value for LagA from working variable V4 before loading V4
with the current value of A.

Transformation syntax

Transformation qualifiers have one of six forms, namely

!operator to perform an operation on the current field,
for example, !ABS to take absolute values,

!operator value to perform an operation involving an argu-
ment on the current field, for example, !+3
to add 3 to all elements in the field,

!operator Vfield to perform an operation on the current field
using the data in another field, for example,
!-V2 to subtract field 2 from the current field

!V target to reset the focus for subsequent transforma-
tions to field number target,

!V target = value to change all of the data in a target field to
a given value,

!V target = Vfield to overwrite the data in a target field by the
data values of another field; a special case is
when field is 0 instructing ASReml to put the
record number into the target field.

• ! flags the presence of the transformation

• operator is one of the symbols defined in Table 5.1,

• value is the argument required by the transformation,

• V is the literal character and is followed by the number (target or field) of a
data field; the data field is used or modified depending on the context,

• Vfield may be replaced by the label of the field if it already has a label,

• in the first three forms the operation is performed on the current field; this
will be the field associated with the label unless the focus has been reset by
specifying a new target in a preceding transformation,

• the next three forms change the focus for subsequent transformations to the
field target,
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• in the last two forms a value is assigned to the target field. For example,
... !V22=V11 ... copies (existing) field 11 into field 22. Such a statement
would typically be followed by more transformations. If there are fewer than
22 variables labelled then V22 is used in the transformation stage but not kept
for analysis.

Table 5.1: List of transformation qualifiers and their actions with examples

qualifier argument action examples

!=, !+, !-, !*,
!/

v usual arithmetic meaning; note that,
0/0 gives 0 but v/0 gives a missing
value where v is not 0.

yield !/10

half !=0.5

zero !=0.

!^ v raises the data (which must be positive)
to the power v.

yield

SQRyld !=yield !^0.5

!^ 0 takes natural logarithms of the data
(which must be positive).

yield

LNyield !=yield !^0

!^ −1 takes reciprocal of data (data must be
positive).

yield

INVyield !=yield !^-1

!>, !<, !<>,
!==, !<=,
!>=

v logical operators forming 1 if true, 0 if
false.

yield

high !=yield !>10

!ABS takes absolute values - no argument re-
quired.

yield

ABSyield !=yield !ABS

!ARCSIN v forms an ArcSin transformation using
the sample size specified in the argu-
ment, a number or another field. In
the side example, for two existing fields
Germ and Total containing counts, we
form the ArcSin for their ratio (ASG) by
copying the Germ field and applying the
ArcSin transformation using the Total

field as sample size.

Germ Total

ASG !=Germ !ARCSIN Total

!COS, !SIN s takes cosine and sine of the data vari-
able with period s having default 2π;
omit s if data is in radians, set s to 360
if data is in degrees.

Day

CosDay !=Day !COS 365

!D, !D<>,

!D<, !D<=,

!D>, !D>=

v
v
v

!Dv discards records which have v or
’missing value’ in the field; if !D is used
after !A or !I, v should refer to the en-
coded factor level rather than the value
in the data file (see also Section 4.2).
Use !D * to discard just those records
with a missing value in the field.

yield !D<=0

yield !D<1 !D>100

InitialWt !D *
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List of transformation qualifiers and their actions with examples

qualifier argument action examples

!DOM

New
f copies and converts additive marker

covariables (-1, 0, 1) to dominance
marker covariables (see below).

ChrAdom !DOM ChrAadd

!EXP takes antilog base e - no argument re-
quired.

Rate !EXP

!Jddm, !Jmmd

!Jyyd

!Jddm converts a number representing
a date in the form ddmmccyy, ddmmyy
or ddmm into days. !Jmmd converts a
date in the form ccyymmdd, yymmdd
or mmdd into days. !Jyyd converts a
date in the form ccyyddd or yyddd into
days. These calculate the number of
days since December 31 1900 and are
valid for dates from January 1 1900 to
December 31 2099; note that
if cc is omitted it is taken as 19 if yy >
32 and 20 if yy < 33,
the date must be entirely numeric:
characters such as / may not be present
(but see !DATE.

!M, !M<>,

!M< !M<=

!M> !M>=

v
v
v

!Mv converts data values of v to miss-
ing; if !M is used after !A or !I, v should
refer to the encoded factor level rather
than the value in the data file (see also
Section 4.2).

yield !M-9

yield !M<=0 !M>100

!MAX, !MIN,

!MOD

v the maximum, minimum and modulus
of the field values and the value v.

yield !MAX 9

!MM

New
s assigns Haldane map positions (s) to

marker variables and imputes missing
values to the markers (see below).

ChrAadd !G 10 !MM 1 · · ·

!NA v replaces any missing values in the vari-
ate with the value v.

Rate !NA 0

!NORMAL

New
v replaces the variate with normal ran-

dom variables having variance v.
Ndat !=0 !Normal 4.5

is equivalent to
Ndat !=Normal 4.5

!REPLACE

New
o n replaces data values o with n in the cur-

rent variable. I.e.
IF(DataValue.EQ.o) DataValue=n

Rate !REPLACE -9 0

!RESCALE

New
o s rescales the column(s) in the current

variable (!G group of variables) using
Y = (Y + o) ∗ s

Rate !RESCALE -10 0.1
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List of transformation qualifiers and their actions with examples

qualifier argument action examples

!SEED

New
v sets the seed for the random number

generator.
· · · !SEED 848586

!SET vlist for vlist, a list of n values, the data
values 1 . . . n are replaced by the cor-
responding element from vlist; data
values that are < 1 or > n are re-
placed by zero. vlist may run over
several lines provided each incomplete
line ends with a comma, i.e., a comma
is used as a continuation symbol (see
Other examples below).

treat !L C A B

CvR !=treat !SET 1 -1 -1

group !=treat !SET 1,

2 2 3 3 4

!SETN

New
v n !SETN v n replaces data values 1 : n

with normal random variables having
variance v. Data values outside the
range 1 · · ·n are set to 0.

Anorm !=A !SETN 2.5 10

!SETU

New
v n replaces data values 1 : n with uniform

random variables having range 0 : v.
Data values outside the range 1 · · ·n
are set to 0.

Aeff !=A !SETU 5 10

!SUB vlist replaces data values = vi with their in-
dex i where vlist is a vector of n values.
Data values not found in vlist are set
to 0. vlist may run over several lines
if necessary provided each incomplete
line ends with a comma. ASReml allows
for a small rounding error when match-
ing. It may not distinguish properly if
values in vlist only differ in the sixth
decimal place (see Other examples be-
low).

year 3 !SUB 66 67 68

!SEQ replaces the data values with a sequen-
tial number starting at 1 which incre-
ments whenever the data value changes
between successive records; the current
field is presumed to define a factor and
the number of levels in the new factor is
set to the number of levels identified in
this sequential process (see Other ex-
amples below). Missing values remain
missing.

plot !=V3 !SEQ

!UNIFORM

New
v replaces the variate with uniform ran-

dom variables having range 0 : v.
Udat !=0. !Uniform 4.5

is equivalent to
Udat !=Uniform 4.5
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List of transformation qualifiers and their actions with examples

qualifier argument action examples

!Vtarget= value assigns value to data field target over-
writing previous contents; subsequent
transformation qualifiers will operate
on data field target.

· · · !V3=2.5

Vfield assigns the contents of data field field
to data field target overwriting previ-
ous contents; subsequent transforma-
tion qualifiers will operate on data field
target. If field is 0 the number of the
data record is inserted.

· · · !V10=V3
· · · !V11=block
· · · !V12=V0

QTL marker transformations

!MM s associates marker positions in the vector s (based on the Haldane mappingNew

function) with marker variables and replaces missing values in a vector of marker
states with expected values calculated using distances to non-missing flanking
markers. This transformation will normally be used on a !G n factor where the
n variables are the marker states for n markers in a linkage group in map order
and coded [-1,1] (backcross) or [-1,0,1] (F2 design). s (length n+1) should be
the n marker positions relative to a left telomere position of zero, and an extra
value being the length of the linkage group (the position of the right telomere).
The length (right telomere) may be omitted in which case the last marker is
taken as the end of the linkage group. The positions may be given in Morgans
or centiMorgans (if the length is greater than 10, it will be divided by 100 to
convert to Morgans).

The recombination rate between markers at sL and sR (L is left and R is right
of some putative QTL at Q) is
θLR = (1− e−2(sR−sL))/2.
Consequently, for 3 markers (L,Q,R), θLR = θLQ + θQR − 2θLQθQR.
The expected value of a missing marker at Q (between L and R) depends on the
marker states at L and R: E(q|1, 1) = (1− θLQ − θQR)/(1− θLR),
E(q|1,−1) = (θQR − θLQ)/θLR, E(q| − 1, 1) = (θLQ − θQR)/θLR

and E(q| − 1,−1) = (−1 + θLQ + θQR)/(1− θLR).
Let λL = (E(q|1, 1) + E(q|1,−1))/2 = θQR(1−θQR)(1−2θLQ)

θLR(1−θLR)
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and λR = (E(q| − 1, 1) + E(q| − 1,−1))/2 = θLQ(1−θLQ)(1−2θQR)
θLR(1−θLR)

Then E(q|xL, xR) = λLxL + λRxR. Where there is no marker on one side,
E(q|xR) = (1− θQR)xR + θQR(−xR) = xR(1− 2θQR) .

!DOM A is used to form dominance covariables from a set of additive markerNew

covariables previously declared with the!MM marker map qualifier. It assumes
the argument A is an existing group of marker variables relating to a linkage
group defined using !MM which represents additive marker variation coded [-1,
0, 1] (representing marker states aa, aA and AA) respectively. It is a group
transformation which takes the [-1,1] interval values, and calculates (|X|−0.5)∗2
i.e. -1 and 1 become one, 0 becomes -1. The marker map is also copied and applied
to this model term so it can be the argument in a qtl() term (page 95).

Other rules and examples

Other rules include the following

• missing values are unaffected by arithmetic operations, that is, missing values
in the current or target column remain missing after the transformation has
been performed except in assignment

– !+3 will leave missing values (NA, * and .) as missing,
– !=3 will change missing values to 3,

• multiple arithmetic operations cannot be expressed in a complex expression
but must be given as separate operations that are performed in sequence as
they appear, for example, yield !-120 !*0.0333 would calculate 0.0333 *
(yield - 120).

ASReml code action

yield !M0 changes the zero entries in yield to missing values

yield !^0 takes natural logarithms of the yield data

score !-5 subtracts 5 from all values in score

score !SET -0.5 1.5 2.5 replaces data values of 1, 2 and 3 with -0.5, 1.5 and
2.5 respectively
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ASReml code action

score !SUB -0.5 1.5 2.5 replaces data values of -0.5, 1.5 and 2.5 with 1, 2
and 3 respectively; a data value of 1.51 would be
replaced by 0 since it is not in the list or very close
to a number in the list

block 8

variety 20

yield

plot * !=variety !SEQ

in the case where

– there are multiple units per plot,

– contiguous plots have different treatments, and

– the records are sorted units within plots within
blocks,

this code generates a plot factor assuming a new
plot whenever the code in V2 (variety) changes; no
field would be read unless there were later definitions
which are not created by transformation,

Var 3

Nit 4

VxN 12 !=Var !-1 !*4 !+Nit

assuming Var is coded 1:3 and Nit is coded 1:4, this
syntax could be used to create a new factor VxN with
the 12 levels of the composite Var by Nit factor.

YA !V98=YA !NA 0

YB !V99=YB !NA 0 !+V98 !D0

will discard records where both YA and YB have miss-
ing values (assuming neither have zero as valid data).
The first line sets the focus to variable 98, copies YA

into V98 and changes any missing values in V98 to
zero. The second line sets the focus to variable 99,
copies YB into V99 and changes any missing values
in V99 to zero. It then adds V98 and discards the
whole record if the result is zero, i.e. both YA and
YB have missing values for that record. Variables 98

and 99 are not labelled and so are not retained for
subsequent use in analysis.

Special note on covariates

Covariates are variates that appear as independent variables in the model. It is
recommended that covariates be centred and scaled to have a mean of zero and
a variance of approximately one to avoid failure to detect singularities. This can
be achieved either

• externally to ASReml in data file preparation,

• using !RESCALE -mean scale where mean and scale are user supplied values,
for example, age !rescale -200 !/10.
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5.6 Datafile line

The purpose of the datafile line is to

• nominate the data file,

• specify qualifiers to modify

– the reading of the data,
– the output produced,
– the operation of ASReml.

NIN Alliance Trial 1989

variety !A
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety
...

Data line syntax

The datafile line appears in the ASReml command file in the form

datafile [qualifiers]

• datafile is the path name of the file that contains the variates, factors, covari-
ates, traits (response variates) and weight variables represented as data fields,
see Chapter 4; enclose the path name in quotes if it contains embedded blanks,

• the qualifiers tell ASReml to modify either

– the reading of the data and/or the output produced, see Table 5.2 below for
a list of data file related qualifiers,

– the operation of ASReml, see Tables 5.3 to 5.6 for a list of job control qual-
ifiers

• the data file related qualifiers must appear on the data file line,

• the job control qualifiers may appear on the data file line or on following lines,

• the arguments to qualifiers are represented by the following symbols

f — a filename,
n — an integer number, typically a count,
p — a vector of real numbers, typically in increasing order,
r — a real number,
s — a character string,
t — a model term label,
v — the number or label of a data variable,
vlist — a list of variable labels.
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5.7 Data file qualifiers

Table 5.2 lists the qualifiers relating to data input. Use the Index to check for
examples or further discussion of these qualifiers.

Table 5.2: Qualifiers relating to data input and output

qualifier action

Frequently used data file qualifier

!SKIP n causes the first n records of the (non-binary) data file to be
ignored. Typically these lines contain column headings for
the data fields.

Other data file qualifiers

!CSV used to make consecutive commas imply a missing value; this
is automatically set if the file name ends with .csv or .CSV

(see Section 4.2)

,

!FILTER v !SELECT n enables a subset of the data to be analysed; v is the number
or name of a data field. When reading data, the value in
field v is checked after any transformations are performed. If
!select is omitted, records with zero in field v are omitted
from the analysis. Otherwise, records with n in field v are
retained and all other records are omitted. Warning If the
filter column contains a missing value, the value from the
previous non-missing record is assumed in that position.

!FORMAT s supplies a Fortran like FORMAT statement for reading fixed for-
mat files. A simple example is !FORMAT(3I4,5F6.2) which
reads 3 integer fields and 5 floating point fields from the first
42 characters of each data line. A format statement is en-
closed in parentheses and may include 1 level of nested paren-
theses, for example, e.g. !FORMAT(4x,3(I4,f8.2)). Field
descriptors are

• rX to skip r character positions,

• rAw to define r consecutive fields of w characters width,

• rIw to define r consecutive fields of w characters width,
and

• rFw.d to define r consecutive fields of w characters width;
d indicates where to insert the decimal point if it is not
explicitly present in the field,

where r is an optional repeat count.

In ASReml, the A and I field descriptors are treated identi-
cally and simply set the field width. Whether the field is
interpreted alphabetically or as a number is controlled by the
!A qualifier.
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Qualifiers relating to data input and output

qualifier action

Other legal components of a format statement are

• the , character; required to separate fields - blanks are
not permitted in the format.

• the / character; indicates the next field is to be read from
the next line. However a / on the end of a format to skip
a line is not honoured.

• BZ; the default action is to read blank fields as missing
values. * and NA are also honoured as missing values. If
you wish to read blank fields as zeros, include the string
BZ.

• the string BM; switches back to ’blank missing’ mode.

• the string Tc; moves the ’last character read’ pointer to line
position c so that the next field starts at position c + 1.
For example T0 goes back to the beginning of the line.

• the string D; invokes debug mode.

A format showing these components is
!FORMAT(D,3I4,8X,A6,3(2x,F5.2)/4x,BZ,20I1) and is
suitable for reading 27 fields from 2 data records such as
111122223333xxxxxxxxALPHAFxx 4.12xx 5.32xx 6.32

xxxx123 567 901 345 7890

!MERGE c f [ !SKIP n ]
New

[ !MATCH a b ] may be specified on a line following the datafile line.
The purpose is to combine data fields from the (primary) data
file with data fields from a secondary file (f). The effect is to
open the named file (skip n lines) and then insert the columns
from the new file into field positions starting at position c.
If !MATCH a b is specified, ASReml checks that the field a
(0 < a < c) has the same value as field b. If not, it is assumed
that the merged file has some missing records and missing
values are inserted into the data record and the line from the
MERGE file is kept for comparison with the next record. At
this stage it is expected that the lines in the MERGE file
are in the same order as the corresponding lines occur in the
primary data file, and that there are no extraneous lines in
the MERGE file. (It is proposed to extend this so the orders
do not need to agree and that multiple lines in the primary
file could be merged with the same line of the MERGE file.)
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Qualifiers relating to data input and output

qualifier action

For example, assuming the field definitions define 10 fields,
PRIMARY.DAT !skip 1

!MERGE 6 SECOND.DAT !SKIP 1 !MATCH 1 6

would obtain the first five fields from PRIMARY.DAT and
the next five from SECOND.DAT, checking that the first field
in each file has the same value.
Thus each input record is obtained by combining information
from each file, before any transformations are performed.

!READ n formally instructs ASReml to read n data fields from the data
file. It is needed when there are extra columns in the data file
that must be read but are only required for combination into
earlier fields in transformations, or when ASReml attempts to
read more fields than it needs to.

!RECODE is required when reading a binary data file with pedigree iden-
tifiers that have not been recoded according to the pedigree
file. It is not needed when the file was formed using the !SAVE
option but will be needed if formed in some other way (see
Section 4.2).

!RREC [n]
New

causes ASReml to read n records or to read up to a data
reading error if n is omitted, and then process the records it
has. This allows data to be extracted from a file which con-
tains trailing non-data records (for example extracting the
predicted values from a .pvs file). The argument (n) speci-
fies the number of data records to be read. If not supplied,
ASReml reads until a data reading error occurs, and then pro-
cesses the data it has. Without this qualifier, ASReml aborts
the job when it encounters a data error. See !RSKIP.

!RSKIP n [s]
New

allows ASReml to skip lines at the heading of a file down to
(and including) the nth instance of string s. For example, to
read back the third set predicted values in a .pvs file, you
would specify

!RREC !RSKIP 4 ’ Ecode’

since the line containing the 4th instance of ’ Ecode’ imme-
diately precedes the predicted values. The !RREC qualifier
means that ASReml will read until the end of the predict ta-
ble. The keyword Ecode which occurs once at the beginning
and then immediately before each block of data in the .pvs

file is used to count the sections.
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Combining rows from separate files

ASReml can read data from multiple files provided the files have the same layout.New

The file specified as the ’primary data file’ in the command file can contain lines
of the form
!INCLUDE <filename> !SKIP n

where <filename> is the (path)name of the data subfile and !SKIP n is an
optional qualifier indicating that the first n lines of the subfile are to be skipped.
After reading each subfile, input reverts to the primary data file.

Typically, the primary data file will just contain !INCLUDE statements identifying
the subfiles to include. For example, you may have data from a series of related
experiments in separate data files for individual analysis. The primary data file
for the subsequent combined analysis would then just contain a set of !INCLUDE
statements to specify which experiments were being combined.

If the subfiles have CSV format, they should all have it and the !CSV file should be
declared on the primary datafile line. This option is not available in combination
with !MERGE.

5.8 Job control qualifiers

The following tables list the job control qualifiers. These change or control various
aspects of the analysis. Job control qualifiers may be placed on the datafile line
and following lines. They may also be defined using an environment variable
called ASREML QUAL. The environment variable is processed immediately after the
datafile line is processed. All qualifier settings are reported in the .asr file. Use
the Index to check for examples or further discussion of these qualifiers.

Important Many of these are only required in very special circumstances and
new users should not attempt to understand all of them. You do need to under-
stand that all general qualifiers are specified here. Many of these qualifiers are
referenced in other chapters where their purpose will be more evident.
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Table 5.3: List of commonly used job control qualifiers

qualifier action

!CONTINUE is used to restart/resume iterations from the point reached in
a previous run. This qualifier can alternately be set from the
command line using the option letters C (continue) or F (fi-
nal) (see Section 12.3 on command line options). After each
iteration, ASReml writes the current values of the variance pa-
rameters to a file with extension .rsv (re-start values) with
information to identify individual variance parameters. The
!CONTINUE qualifier causes ASReml to scan the .rsv file for
parameter values related to the current model replacing the
values obtained from the .as file before iteration resumes.
If the model has changed, ASReml will pick up the values it
recognises as being for the same terms. Furthermore, AS-
Reml will use estimates in the .rsv file for certain models to
provide starting values for certain more general models, in-
serting reasonable defaults where necessary. The transitions
recognised are listed and discussed in Section 7.10.

DIAG to FA1

DIAG to CORUH (uniform heterogeneous)
CORUH to FA1

FAi to FAi+1
FAi to CORGH (full heterogeneous)
FAi to US (full heterogeneous)
CORGH (heterogeneous) to US

!CONTRAST s t p
New

provides a convenient way to define contrasts among treat-
ment levels. !CONTRAST lines occur as separate lines between
the datafile line and the model line.

s is the name of the model term being defined.
t is the name of an existing factor.
p is the list of contrast coefficients. For example

!CONTRAST LinN Nitrogen 3 1 -1 -3

defines LinN as a contrast based on the 4 (implied by the
length of the list) levels of factor Nitrogen. Missing values in
the factor become missing values in the contrast. Zero values
in the factor (no level assigned) become zeros in the contrast.
The user should check that the levels of the factor are in the
order assumed by contrast (check the .ass or .sln or .tab

files). It may also be used on the implicit factor Trait in
a multivariate analysis provided it implicitly identifies the
number of levels of Trait; the number of traits is implied by
the length of the list. Thus, if the analysis involves 5 traits,

!CONTRAST Time Trait 1 3 5 10 20
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List of commonly used job control qualifiers

qualifier action

!FCON

New
adds a ’conditional’ F-statistic column to the Analysis of Vari-
ance table. It enables inference for fixed effects in the dense
part of the linear mixed model to be conducted so as to re-
spect both structural and intrinsic marginality (see Section
2.6). The detail of exactly which terms are conditioned on is
reported in the .aov file. The principle used in determining
this conditional test is that a term cannot be adjusted for
another term which encompasses it explicitly (e.g. term A.C

cannot be adjusted for A.B.C) or implicitly (e.g. term REGION

cannot be adjusted for LOCATION when locations are actually
nested in regions although they are coded independently).

!MAXIT n sets the maximum number of iterations; the default is 10.
ASReml iterates for n iterations unless convergence is achieved
first. Convergence is presumed when the REML log-likelihood
changes less than 0.002* current iteration number and the
individual variance parameter estimates change less than 1%.

If the job has not converged in n iterations, use the !CONTINUE
qualifier to resume iterating from the current point.

To abort the job at the end of the current iteration, create a
file named ABORTASR.NOW in the directory in which the job is
running. At the end of each iteration, ASReml checks for this
file and if present, stops the job, producing the usual output
but not producing predicted values since these are calculated
in the last iteration. Creating FINALASR.NOW will stop ASReml
after one more iteration (during which predictions will be
formed).

On case sensitive operating systems (eg. Unix), the filename
(ABORTASR.NOW or FINALASR.NOW) must be upper case. Note
that the ABORTASR.NOW file is deleted so nothing of importance
should be in it. If you perform a system level abort (CTRL C
or close the program window) output files other than the .rsv
file will be incomplete. The .rsv file should still be functional
for resuming iteration at the most recent parameter estimates
(see !CONTINUE).

Use !MAXIT 1 where you want estimates of fixed effects and
predictions of random effects for the particular set of variance
parameters supplied as initial values. Otherwise the estimates
and predictions will be for the updated variance parameters
(see the !BLUP qualifier below).
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List of commonly used job control qualifiers

qualifier action

If !MAXIT 1 is used and an Unstructured Variance model is fit-
ted, ASReml will perform a Score test of the US matrix. Thus,
assume the variance structure is modelled with reduced pa-
rameters, if that modelled structure is then processed as the
initial values of a US structure, ASReml tests the adequacy
of the reduced parameterization.

!SUM

New
causes ASReml to report a general description of the distribu-
tion of the data variables and factors and simple correlations
among the variables for those records included in the anal-
ysis. This summary will ignore data records for which the
variable being analysed is missing unless a multivariate anal-
ysis is requested or missing values are being estimated. The
information is written to the .ass file.

!X v !Y v !G v !JOIN is used to plot the (transformed) data. Use !X to specify
the x variable, !Y to specify the y variable and !G to specify
a grouping variable. !JOIN joins the points when the x
value increases between consecutive records. The grouping
variable may be omitted for a simple scatter plot. Omit !Y

y produce a histogram of the x variable.

For example,
!X age !Y height !G sex

Note that the graphs are only produced in the graphics ver-
sions of ASReml (Section 12.3).

For multivariate repeated measures data, ASReml can plot
the response profiles if the first response is nominated with
the !Y qualifier and the following analysis is of the multi-
variate data. ASReml assumes the response variables are in
contiguous fields and are equally spaced. For example
Response profiles

Treatment !A

Y1 Y2 Y3 Y4 Y5

rat.asd !Y Y1 !G Treatment !JOIN

Y1 Y2 Y3 Y4 Y5 ∼ Trait Treatment Trait.Treatment



5 Command file: Reading the data 67

Table 5.4: List of occasionally used job control qualifiers

qualifier action

!ASMV n indicates a multivariate analysis is required although the data
is presented in a univariate form. ’Multivariate Analysis’ is
used in the narrow sense where an unstructured error variance
matrix is fitted across traits, records are independent, and
observations may be missing for particular traits, see Chapter
8 for a complete discussion.

The data is presumed arranged in lots of n records where n is
the number of traits. It may be necessary to expand the data
file to achieve this structure, inserting a missing value NA on
the additional records. This option is sometimes relevant for
some forms of repeated measures analysis. There will need to
be a factor in the data to code for trait as the intrinsic Trait

factor is undefined when the data is presented in a univariate
manner.

!ASUV indicates that a univariate analysis is required although the
data is presented in a multivariate form. Specifically, it allows
you to have an error variance other than I ⊗ Σ where Σ is
the unstructured (US, see Table 7.3) variance structure. If
there are missing values in the data, include !f mv on the
end of the linear model. It is often also necessary to specify
the !S2==1 qualifier on the R-structure lines. The intrinsic
factor Trait is defined and may be used in the model. See
Chapter 8 for more information.

This option is used for repeated measures analysis when the
variance structure required is not the standard multivariate
unstructured matrix.

!COLFAC v is used with !SECTION v and !ROWFAC v to instruct ASReml to
set up R structures for analysing a multi-environment trial
with a separable first order autoregressive model for each site
(environment). v is the name of a factor or variate containing
column numbers (1 . . . nc where nc is the number of columns)
on which the data is to be sorted. See !SECTION for more
detail.
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List of occasionally used job control qualifiers

qualifier action

!DDF [i]
New

requests computation of the approximate denominator
degrees of freedom according to Kenward and Roger (1997)
for the Analysis of Variance of fixed effects terms in the dense
part of the linear mixed model. There are three options for
i: i = −1 suppresses computation, i = 1 and i = 2 compute
the denominator d.f. using numerical and algebraic methods
respectively.
If i is omitted then i = 2 is assumed.
If !DDF i is omitted, i = −1 is assumed except for small jobs
(< 10 parameters, < 500 fixed effects, < 10, 000 equations
and < 100 Mbyte workspace) when i = 2.

Calculation of the denominator degrees of freedom is compu-
tationally expensive. Numerical derivatives require an extra
evaluation of the mixed model equations for every variance
parameter. Algebraic derivatives require a large dense ma-
trix, potentially of order number of equations plus number of
records and is not available when MAXIT is 1 or for multivari-
ate analysis.

!DISPLAY n is used to select particular graphic displays. In spatial anal-
ysis of field trials, four graphic displays are possible (see Sec-
tion 13.4). Coding these

1=variogram
2=histogram
4=row and column trends
8=perspective plot of residuals,

set n to the sum of the codes for the desired graphics. The
default is 9. These graphics are only displayed in versions
of ASReml linked with Winteracter (that is, Linux, Sun and
PC) versions. Line printer versions of these graphics are writ-
ten to the .res file. See the G command line option (Section
12.3 on graphics) for how to save the graphs in a file for print-
ing.
Use !NODISPLAY to suppress graphic displays.

!EPS sets hardcopy graphics file type to .eps.

!G v is used to set a grouping variable for plotting, see !X.
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List of occasionally used job control qualifiers

qualifier action

!GKRIGE [p]
New

controls the expansion of !PVAL lists for fac(X,Y ) model
terms. For kriging prediction in 2 dimensions (X,Y ), the
user will typically want to predict at a grid of values, not
necessarily just at data combinations. The values at which
the prediction is required can be specified separately for X
and Y using two !PVAL statements. Normally, predict points
will be defined for all combinations of X and Y values. This
qualifier is required (with optional argument 1) to specify the
lists are to be taken in parallel. The lists must be the same
length if to be taken in parallel.
Be aware that adding two dimensional prediction points is
likely to substantially slow iterations because the variance
structure is dense and becomes larger. For this reason, AS-
Reml will ignore the extra PVAL points unless either !FINAL
or !GKRIGE are set, to save processing time.

!HPGL [2] sets hardcopy graphics file type to HP GL. An argument of
2 sets the hardcopy graphics file type to HP GL 2

!JOIN is used to join lines in plots, see !X.

!MBF mbf(v,n) f
New

[!SKIP k ] specified on a separate line after the datafile line predefines
the model term mbf(v,n) as a set of n covariates indexed
by the data values in variable v. MBF stands for My Basis
Function and uses the same mechanism as the leg(), pol()

and spl() model functions but with covariates supplied by
the user. The file f should contain 1+n fields where the first
field contains the values which are in the data variable or at
which prediction is required, and the remaining n fields define
the corresponding covariate values. !SKIP k is an optional
qualifier which requests the first k lines of the file be ignored.

!MVINCLUDE When missing values occur in the design ASRemlwill report
this fact and abort the job unless !MVINCLUDE is specified (see
Section 6.10); then missing values are treated as zeros. Use
the !D transformation to drop the records with the missing
values.

!MVREMOVE instructs ASReml to discard records which have missing values
in the design matrix (see Section 6.10).

!NODISPLAY suppresses the graphic display of the variogram and residuals
which is otherwise produced for spatial analyses in the PC and
SUN versions. This option is usually set on the command line
using the option letter N (see Section 12.3 on graphics). The
text version of the graphics is still written to the .res file.

!PS sets hardcopy graphics file type to .ps.
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List of occasionally used job control qualifiers

qualifier action

!PVAL v p is a mechanism for specifying the particular points to be
predicted for covariates modelled using fac(v), leg(v,k),
spl(v,k) and pol(v,k). The points are specified here so
that they can be included in the appropriate design matrices.
v is the name of a data field. p is the list of values at which
prediction is required. See !GKRIGE for special conditions per-
taining to fac(x,y) prediction.

!PVAL f vlist is used to read predict points for several variables from a file
f. vlist is the names of the variables having values defined. If
the file contains unwanted fields, put the pseudo variate label
skip in the appropriate position in vlist to ignore them. The
file should only have numeric values. predict points cannot
be specified for design factors.

!ROWFAC v is used with !SECTION v and !COLFAC v to instruct ASReml to
setup the R structures for multi-environment spatial analysis.
v is the name of a factor or variate containing row numbers
(1 . . . nr where nr is the number of rows) on which the data
is to be sorted. See !SECTION for more detail.

!SECTION v specifies the factor in the data that defines the data sections.
This qualifier enables ASReml to check that sections have
been correctly dimensioned but does not cause ASReml to
sort the data unless !ROWFAC and !COLFAC are also specified.
Data is assumed to be presorted by section but will be sorted
on row and column within section. The following is a basic
example assuming 5 sites (sections).

When !ROWFAC v and !COLFAC v are both specified ASReml
generates the R structures for a standard AR ⊗ AR spatial
analysis. The R structure lines that a user would normally
be required to work out and type into the .as file (see the
example of Section 15.6) are written to the .res file. The
user may then cut and paste them into the .as file for a later
run if the structures need to be modified.

Basic multi-environment trial analysis

site 5 # sites coded 1 ... 5

column * # columns coded 1 ...

row * # rows coded 1 ...

variety !A # variety names

yield

met.dat !SECTION site !ROWFAC row !COLFAC col

yield ∼ site !r variety site.variety !f mv

site 2 0 # variance header line

# asreml inserts the 10 lines required to define

# the R structure lines for the five sites here
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List of occasionally used job control qualifiers

qualifier action

!SPLINE spl(v,n) p defines a spline model term with an explicit set of knot points.
The basic form of the spline model term, spl(v), is defined
in Table 6.1 where v is the underlying variate. The basic form
uses the unique data values as the knot points. The extended
form is spl(v,n) which uses n knot points. Use this !SPLINE
qualifier to supply an explicit set of n knot points (p) for the
model term t. Using the extended form without using this
qualifier results in n equally spaced knot points being used.
The !SPLINE qualifier may only be used on a line by itself
after the datafile line and before the model line.

When knot points are explicitly supplied they should be in
increasing order and adequately cover the range of the data
or ASReml will modify them before they are applied. If you
choose to spread them over several lines use a comma at the
end of incomplete lines so that ASReml will to continue read-
ing values from the next line of input. If the explicit points do
not adequately cover the range, a message is printed and the
values are rescaled unless !NOCHECK is also specified. Inade-
quate coverage is when the explicit range does not cover the
midpoint of the actual range. See !KNOTS, !PVAL and !SCALE.

!STEP r reduces the update step sizes of the variance parameters. The
default value is the reciprocal of the square root of !MAXIT. It
may be set between 0.01 and 1.0. The step size is increased
towards 1 each iteration. Starting at 0.1, the sequence would
be 0.1, 0.32, 0.56, 1. This option is useful when you do not
have good starting values, especially in multivariate analyses.

!SUBSET t v p
New

forms a new factor (t) derived from an existing factor (v)
by selecting a subset (p) of its levels. Missing values are
transmitted as missing and records whose level is zero are
transmitted as zero. The qualifier occupies its own line after
the datafile line but before the linear model. e.g.

!SUBSET EnvC Env 3 5 8 9 :15 21 33

defines a reduced form of the factor Env just selecting the
environments listed. It might then be used in the model in
an interaction.

The intention is to simplify the model specification in MET
(Multi Environment Trials) analyses where say Column ef-
fects are to be fitted to a subset of environments. It may
also be used on the intrinsic factor Trait in a multivariate
analysis provided it correctly identifies the number of levels of
Trait either by including the last trait number, or appending
sufficient zeros. Thus, if the analysis involves 5 traits,

!SUBSET Trewe Trait 1 3 4 0 0
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Table 5.5: List of rarely used job control qualifiers

qualifier action

!AISINGULARITIES

New
can be specified to force a job to continue even though a singu-
larity was detected in the Average Information (AI) matrix.
The AI matrix is used to give updates to the variance pa-
rameter estimates. In release 1, if singularities were present
in the AI matrix, a generalized inverse was used which effec-
tively conditioned on whichever parameters were identified as
singular. ASReml now aborts processing if such singularities
appear unless the !AISINGULARITIES qualifier is set. Which
particular parameter is singular is reported in the variance
component table printed in the .asr file.

The most common reason for singularities is that the user
has overspecified the model and is likely to misinterpret the
results if not fully aware of the situation. Overspecification
will occur in a direct product of two unconstrained variance
matrices (see Section 2.4), when a random term is confounded
with a fixed term and when there is no information in the data
on a particular component.

The best solution is to reform the variance model so that
the ambiguity is removed, or to fix one of the parameters in
the variance model so that the model can be fitted. For in-
stance, if !ASUV is specified, you may also need !S2==1. Only
rarely will it be reasonable to specify the !AISINGULARITIES

qualifier.

!BMP sets hardcopy graphics file type to .bmp.

!BRIEF [n]
New

suppresses some of the information written to the .asr file.
The data summary and regression coefficient estimates are
suppressed. This qualifier should not be used for initial runs
of a job until the user has confirmed from the data summary
that the data is correctly interpreted by ASReml . Use !BRIEF
2 to cause the predicted values to be written to the .asr file
instead of the .pvs file. Use !BRIEF -1 to get BLUE (fixed
effect) estimates reported in .asr file. The !BRIEF qualifier
may be set with the B command line option.

!BLUP n restricts ASReml to performing only part of the first iteration.
The estimation routine is aborted after
n = 1: forming the estimates of the vector of fixed and ran-
dom effects,
n = 2: forming the estimates of the vector of fixed and ran-
dom effects, REML log-likelihood and residuals (this is the
default),
n = 3: forming the estimates of the vector of fixed and ran-
dom effects, REML log-likelihood, residuals and inverse coef-
ficient matrix.
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List of rarely used job control qualifiers

qualifier action

ASReml prints its standard reports as if it had completed the
iteration normally, but since it has not completed it, some
of the information printed will be incorrect. In particular,
variance information on the variance parameters will always
be wrong. Standard errors on the estimates will be wrong
unless n=3. Residuals are not available if n=1. Use of n=3
or n=2 will halve the processing time when compared to the
alternative of using !MAXIT 1. However, !MAXIT 1 does result
in a complete and correct output report.

!DATAFILE f specifies the datafile name replacing the one obtained from
the datafile line. It is required when different !PATHS (see
!DOPATH in Table 12.3) of a job must read different files. The
!SKIP qualifier, if specified, will be applied when reading the
file.

!DENSE n sets the number of equations solved densely up to a maximum
of 5000. By default, sparse matrix methods are applied to the
random effects and any fixed effects listed after random fac-
tors or whose equation numbers exceed 800. Use !DENSE n to
apply sparse methods to effects listed before the !r (reduc-
ing the size of the DENSE block) or if you have large fixed
model terms and want them included in the ANOVA table.
Individual model terms will not be split so that only part is
in the dense section. n should be kept small (<100) for faster
processing.

!DF n alters the error degrees of freedom from ν to ν + n. This
qualifier might be used when analysing pre-adjusted data to
reduce the degrees of freedom (n negative) or when weights
are used in lieu of actual data records to supply error infor-
mation (n positive). The degrees of freedom is only used in
the calculation of the residual variance in a univariate single
site analysis. The option will have no effect in analyses with
multiple error variances (for sites or traits) other than in the
reported degrees of freedom. Use !ADJUST r rather than !DF

n if r is not a whole number. Use with !YSS r to supply
variance when data fully fitted.
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List of rarely used job control qualifiers

qualifier action

!EMFLAG n

New !PXEM n
Caution

requests ASReml use Expectation-Maximization (EM) rather
than Average Information (AI) updates when the AI updates
would make a US structure non-positive definite. This only
applies to US structures and is still under development. When
!GP is associated with a US structure, ASReml checks whether
the updated matrix is positive definite (PD). If not, it re-
places the AI update with an EM update. If the non PD
characteristic is transitory, then the EM update is only used
as necessary. If the converged solution would be non PD,
there will be a EM update each iteration even though !EM is
omitted.
EM is notoriously slow at finding the solution and ASReml
includes several modified schemes, discussed by Cullis et al.
(2004), particularly relevant when the AI update is consis-
tently outside the parameter space. These include optionally
performing extra local EM or PXEM (Parameter Extended
EM) iterates. These can dramatically reduce the number of
iterates required to find a solution near the boundary of the
parameter space but do not always work well when there are
several matrices on the boundary. The options are

!EMFLAG [1] Standard EM plus 10 local EM steps
!EMFLAG 2 Standard EM plus 10 local PXEM steps
!PXEM [2] Standard EM plus 10 local PXEM steps
!EMFLAG 3 Standard EM plus 10 local EM steps
!EMFLAG 4 Standard EM plus 10 local EM steps
!EMFLAG 5 Standard EM only
!EMFLAG 6 Single local PXEM
!EMFLAG 7 Standard EM plus 1 local EM step
!EMFLAG 8 Standard EM plus 10 local EM steps

Options 3 and 4 cause all US structures to be updated by
(PX)EM if any particular one requires EM updates.
The test of whether the AI updated matrix is positive defini-
tite is based on absorbing the matrix to check all pivots are
positive. Repeated EM updates may bring the matrix closer
to being singular. This is assessed by dividing the pivot of
the first element with the first diagonal element of the ma-
trix. If it is less than 10−7 (this value is consistent with
the multiple partial correlation of the first variable with the
rest being greater than 0.9999999, ASReml fixes the matrix
at that point and estimates any other parameters conditional
on these values. To preceed with further iterations without
fixing the matrix values would ultimately make the matrix
such that it would be judged singular resulting the analysis
being aborted.
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List of rarely used job control qualifiers

qualifier action

!EQORDER o
New

modifies the algorithm used for choosing the order for solv-
ing the mixed model equations. A new algorithm devised
for release 2 is now the default and is formally selected by
!EQORDER 3. The algorithm used for release 1 is essentially
that selected by !EQORDER 1. The new order is generally su-
perior. !EQORDER -1 instructs ASReml to process the equa-
tions in the order they are specified in the model. Generally
this will make a job much slower, if it can run at all. It is
useful if the model has a suitable order as in the IBD model

Y ∼ mu !r !{ giv(id) id !}
giv(id) invokes a dense inverse of an IBD matrix and id

has a sparse structured inverse of an additive relationship
matrix. While !EQORDER 3 generates a more sparse solution,
!EQORDER -1 runs faster.

!EXTRA n forces another mod(n,10) rounds of iteration after apparent
convergence. The default for n is 1. This qualifier has lower
priority than !MAXIT and ABORTASR.NOW (see !MAXIT for de-
tails).
Convergence is judged by changes in the REML log-likelihood
value and variance parameters. However, sometimes the vari-
ance parameter convergence criteria has not been satisfied.

!LAST <factor1 > <lev1 >
New
Difficult

[<fac2 > <lev2 > <fac3 > <lev3 >]
limits the order in which equations are solved in ASReml by
forcing equations in the sparse partition involving the first
<levi > equations of <factori > to be solved after all other
equations in the sparse partition. Is intended for use when
there are multiple fixed terms in the sparse equations so that
ASReml will be consistent in which effects are identified as
singular. The test example had

!r Anim Litter !f HYS

where genetic groups were included in the definition of Anim.

Consequently, there were 5 singularities in Anim. The default
reordering allows those singularities to appear anywhere in
the Anim and HYS terms. Since 29 genetic groups were defined
in Anim, !LAST Anim 29 forces the genetic group equations to
be absorbed last (and therefore incorporate any singularities).
In the more general model fitting

!r Tr.Anim Tr.Lit !f Tr.HYS

without !LAST, the location of singularities will almost surely
change if the G structures for Tr.Anim or Tr.Lit are changed,
invalidating Likelihood Ratio tests between the models.

!OWN f supplies the name of a program supplied by the user in asso-
ciation with the OWN variance model (page 131).
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List of rarely used job control qualifiers

qualifier action

!PRINT n causes ASReml to print the transformed data file to base-
name.asp. If
n < 0, data fields 1...mod(n) are written to the file,
n = 0, nothing is written,
n = 1, all data fields are written to the file if it does not exist,
n = 2, all data fields are written to the file overwriting any
previous contents,
n > 2, data fields n. . . t are written to the file where t is the
last defined column.

!PVSFORM n
New

modifies the format of the tables in the .pvs file and changes
the file extension of the file to reflect the format.
!PVSFORM 1 is TAB separated: .pvs → pvs.txt

!PVSFORM 2 is COMMA separated: .pvs → pvs.csv

!PVSFORM 3 is Ampersand separated: .pvs → pvs.tex

See !TXTFORM for more detail.

!RESIDUALS [2] instructs ASReml to write the transformed data and the resid-
uals to a binary file. The residual is the last field. The file
basename.srs is written in single precision unless the argu-
ment is 2 in which case basename.drs is written in double
precision.

The file will not be written from a spatial analysis (two-
dimensional error) when the data records have been sorted
into field order because the residuals are not in the same
order that the data is stored. The residual from a spatial
analysis will have the units part added to it when units is
also fitted. The .drs file could be renamed (with extension
.dbl) and used for input in a subsequent run.

!SAVE n instructs ASReml to write the data to a binary file. The file
asrdata.bin is written in single precision if the argument n
is 1 or 3; asrdata.dbl is written in double precision if the
argument n is 2 or 4; the data values are written before trans-
formation if the argument is 1 or 2 and after transformation
if the argument is 3 or 4. The default is single precision after
transformation (see Section 4.2).
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List of rarely used job control qualifiers

qualifier action

!SCREEN [n] [ !SMX m ]
New

performs a ’Regression Screen’, a form of all subsets regres-
sion. For d model terms in the DENSE equations, there
are 2d − 1 possible submodels. Since for d > 8, 2d − 1 is
large, the submodels explored are reduced by the parameters
n and m so that only models with at least n (default 1) terms
but no more than m (default 6) terms are considered. The
output (see page 192) is a report to the .asr file with a line
for every submodel showing the sums of squares, degrees of
freedom and terms in the model. There is a limit of d = 20
model terms in the screen. ASReml will not allow interac-
tions to be included in the screened terms. For example, to
identify which three of my set of 12 covariates best explain
my dependent variable given the other terms in the model,
specify !SCREEN 3 !SMX 3. The number of models evaluated
quickly increases with d but ASReml has an arbitrary limit of
900 submodels evaluated. Use the !DENSE qualifier to control
which terms are screened. The screen is conditional on all
other terms (those in the SPARSE equations) being present.

!SLNFORM [n]
New

modifies the format of the .sln file.
!SLNFORM -1 prevents the .sln file from being written.
!SLNFORM 1 is TAB separated: .sln becomes sln.txt

!SLNFORM 2 is COMMA separated: .sln becomes sln.csv

!SLNFORM 3 is Ampersand separated: .sln becomes sln.tex

See !TXTFORM for more detail.

!SPATIAL

New
increases the amount of information reported on the residuals
obtained from the analysis of a two dimensional regular grid
field trial. The information is written to the .res file.

!TABFORM [n]
New

controls form of the .tab file
!TABFORM 1 is TAB separated: .tab becomes tab.txt

!TABFORM 2 is COMMA separated: .tab becomes tab.csv

!TABFORM 3 is Ampersand separated: .tab becomes tab.tex

See !TXTFORM for more detail.

!TXTFORM [n]
New

sets the default argument for !PVSFORM, !SLNFORM, !TABFORM
and !YHTFORM if these are not explicitly set. !TXTFORM (or
!TXTFORM 1) replaces multiple spaces with TAB and changes
the file extension to, say, sln.txt. This makes it easier to
load the solutions into Excel.
!TXTFORM 2 replaces multiple spaces with COMMA and
changes the file extension to, say, sln.csv. However, since
factor labels sometimes contain COMMAS, this form is not
so convenient.
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List of rarely used job control qualifiers

qualifier action

!TXTFORM 3 replaces multiple spaces with Ampersand, ap-
pends a double backslash to each line and changes the file
extension to say sln.tex (Latex style).
Additional significant digits are reported with these formats.
Omitting the qualifier means the standard fixed field format
is used. For .yht and .sln files, setting n to -1 means the
file is not formed.

!TWOWAY

New
modifies the appearance of the variogram calculated from the
residuals obtained when the sampling coordinates of the spa-
tial process are defined on a lattice. The default form is
based on absolute ’distance’ in each direction. This form dis-
tinguishes same sign and different sign distances and plots
the variances separately as two layers in the same figure.

!VCC n specifies that n constraints are to be applied to the variance
parameters. The constraint lines occur after the G structures
are defined. The constraints are described in Section 7.9.
The variance header line (Section 7.4) must be present, even
if only 0 0 0 indicating there are no explicit R or G structures
(see Section 7.9).

!VGSECTORS [s]
New

requests that the variogram formed with radial coordinates
(see page 18) be based on s (4, 6 or 8) sectors of size 180/s
degrees. The default is 4 sectors if !VGSECTORS is omitted
and 6 sectors if it is specified without an argument. The first
sector is centred on the X direction.

Figure 5.1 is the variogram using radial coordinates obtained
using predictors of random effects fitted as fac(xsca,ysca).
It shows low semivariance in xsca direction, high semivari-
ance in the ysca direction with intermediate values in the 45
and 135 degrees directions.

!WMF sets hardcopy graphics file type to .wmf.

!YHTFORM [f ]
New

controls the form of the .yht file
!YHTFORM -1 suppresses formation of the .yht file
!YHTFORM 1 is TAB separated: .yht becomes yht.txt

!YHTFORM 2 is COMMA separated: .yht becomes yht.csv

!YHTFORM 3 is Ampersand separated: .yht becomes yht.tex
!YSS [r]

New
adds r to the total Sum of Squares. This might be used
with !DF to add some variance to the analysis when analysing
summarised data.
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Figure 5.1 Variogram in 4 sectors for Cashmore data

Table 5.6: List of very rarely used job control qualifiers

qualifier action

!AILOADINGS i
New

controls modification to AI updates of loadings in factor an-
alytic variance models. After ASReml calculates updates for
variance parameters, it checks whether the updates are rea-
sonable and sometimes reduces them. For factor loadings,
the default behaviour is to shrink the loadings only in the
first iteration if they appear large. This qualifier gives some
user control. If it is specified without an argument, no (extra)
shrinkage is allowed. Otherwise shrinkage is allowed in the
first i iterations.

!CINV n prints the portion of the inverse of the coefficient matrix per-
taining to the nth term in the linear model. Because the
model has not been defined when ASReml reads this line, it
is up to the user to count the terms in the model to iden-
tify the portion of the inverse of the coefficient matrix to be
printed. The option is ignored if the portion is not wholly
in the SPARSE stored equations. The portion of the inverse is
printed to a file with extension .cii The sparse form of the
matrix only is printed in the form i j Cij , that is, elements
of Cij that were not needed in the estimation process are not
included in the file.
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List of very rarely used job control qualifiers

qualifier action

!FACPOINTS n affects the number of distinct points recognised by the fac()

model function (Table 6.1). The default value of n is 1000 so
that points closer than 0.1% of the range are regarded as the
same point.

!KNOTS n changes the default knot points used when fitting a spline to
data with more than n different values of the spline variable.
When there are more than n (default 50) points, ASReml will
default to using n equally spaced knot points.

!NOCHECK forces ASReml to use any explicitly set spline knot points (see
!SPLINE) even if they do not appear to adequately cover the
data values.

!NOREORDER prevents the automatic reversal of the order of the fixed terms
(in the dense equations) and possible reordering of terms in
the sparse equations.

!NOSCRATCH forces ASReml to hold the data in memory. ASReml will usu-
ally hold the data on a scratch file rather than in memory. In
large jobs, the system area where scratch files are held may
not be large enough. A Unix system may put this file in the
/tmp directory which may not have enough space to hold it.

!POLPOINTS n affects the number of distinct points recognised by the pol()

model function (Table 6.1). The default value of n is 1000 so
that points closer than 0.1% of the range are regarded as the
same point.

!PPOINTS n influences the number of points used when predicting splines
and polynomials. The design matrix generated by the leg(),
pol() and spl() functions are modified to include extra rows
that are accessed by the PREDICT directive. The default value
of n is 21 if there is no !PPOINTS qualifier. The range of the
data is divided by n-1 to give a step size i. For each point p
in the list, a predict point is inserted at p + i if there is no
data value in the interval [p,p+1.1×i]. !PPOINTS is ignored if
!PVAL is specified for the variable. This process also effects
the number of levels identified by the fac() model term.

!REPORT forces ASReml to attempt to produce the standard output re-
port when there is a failure of the iteration algorithm. Usu-
ally no report is produced unless the algorithm has at least
produced estimates for the fixed and random effects in the
model. Note that residuals are not included in the output
forced by this qualifier. This option is primarily intended to
help debugging a job that is not converging properly.
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List of very rarely used job control qualifiers

qualifier action

!SCALE 1 When forming a design matrix for the spl() model term,
ASReml uses a standardized scale (independent of the actual
scale of the variable). The qualifier !SCALE 1 forces ASReml
to use the scale of the variable. The default standardised
scale is appropriate in most circumstances.

!SCORE

New
requests ASReml write the SCORE vector and the Average
Information matrix to files basename.SCO and basename.AIM.
The values written are from the last iteration.

!SLOW n reduces the update step sizes of the variance parameters more
persistently than the !STEP r qualifier. If specified, ASReml
looks at the potential size of the updates and if any are large,
it reduces the size of r. If n is greater than 10 ASReml also
modifies the Information matrix by multiplying the diagonal
elements by n. This has the effect of further reducing the
updates. This option may help when you do not have good
starting values, especially in multivariate analyses.

!TOLERANCE [s1 [ s2]]
New

modifies the ability of ASReml to detect singularities in the
mixed model equations. This is intended for use on the
rare occasions when ASReml detects singularities after the
first iteration; they are not expected. Normally (when no
!TOLERANCE qualifier is specified), a singularity is declared if
the adjusted sum of squares of a covariable is less than a small
constant (η) or less than the uncorrected sum of squares ×η,
where η is 10−8 in the first iteration and 10−10 thereafter.
The qualifier scales η by 10si for the the first or subsequent
iterations respectively, so that it is more likely an equation
will be declared singular. Once a singularity is detected, the
corresponding equation is dropped (forced to be zero) in sub-
sequent iterations. If neither argument is supplied, 2 is as-
sumed. If the second argument is omitted, it is given the
value of the first.
If the problem of later singularities arises because of the low
coefficient of variation of a covariable, it would be better to
centre and rescale the covariable. If the degrees of freedom
are correct in the first iteration, the problem will be with
the variance parameters and a different variance model (or
variance constraints) is required.

!VRB

New
requests writing of .vrb file. Previously, the default was to
write the file.
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6.1 Introduction

The linear mixed model is specified in ASReml as a series of model terms and
qualifiers. In this chapter the model formula syntax is described.

6.2 Specifying model formulae in ASReml

The linear mixed model is specified in AS-

Reml as a series of model terms and qualifiers.
Model terms include factor and variate labels
(Section 5.4), functions of labels, special terms
and interactions of these. The model is speci-
fied immediately after the datafile and any job
control qualifier and/or tabulate lines. The
syntax for specifying the model is

NIN Alliance Trial 1989

variety
...

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2

11 column AR1 .3

22 row AR1 .3

response [!wt weight] ∼ fixed [!r random] [!f sparse fixed]

• response is the label for the response variable(s) to be analysed; multivariate
analysis is discussed in Chapter 8,

• weight is a label of a variable containing weights; weighted analysis is discussed
in Section 6.7,

• ∼ separates response from the list of fixed and random terms,

• fixed represents the list of primary fixed explanatory terms, that is, variates,
factors, interactions and special terms for which analysis of variance (ANOVA)
type tests are required. See Table 6.1 for a brief definition of reserved model
terms, operators and commonly used functions. The full definition is in Section
6.6,

• random represents the list of explanatory terms to be fitted as random effects,
see Table 6.1,

• sparse fixed are additional fixed terms not included in the ANOVA table.

General rules

The following general rules apply in specifying the linear mixed model

• all elements in the model must be space separated,

• the character ∼ separates the response variables(s) from the explanatory vari-
ables in the model,
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• data fields are identified in the model by their labelsChoose labels

that will avoid

confusion
– labels are case sensitive,
– labels may be abbreviated (truncated) when used in the model line but care

must be taken that the truncated form is not ambiguous. If the truncated
form matches more than one label, the term associated with the first match
is assumed,

– model terms may only appear once in the model line; repeated occurrences
are ignored,

– model terms other than the original data fields are defined the first time they
appear on the model line. They may be abbreviated (truncated) if they are
referred to again provided no ambiguity is introduced.
Important It is often clearer if labels are not abbreviated. If abbreviations
are used then they need to be chosen to avoid confusion.

• if the model is written over several lines, all but the final line must end with a
comma to indicate that the list is continued.

In Tables 6.1 and 6.2, the arguments in model term functions are represented by
the following symbols

f — the label of a data variable defined as a model factor,

k, n — an integer number,

r — a real number,

t — a model term label (includes data variables),

v, y — the label of a data variable,

Parsing of model terms in ASReml is not very sophisticated. Where a model term
takes another model term as an argument, the argument must be predefined. If
necessary, include the argument in the model line with a leading ’-’ which will
cause the term to be defined but not fitted. For example

Trait.male -Trait.female and(Trait.female)
Also, dens is an abbeviation for density but spl(dens,7) is a different model
term (albiet probably equivalent) to spl(density,7) because it does not repre-
sent a simple truncation.
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Table 6.1: Summary of reserved words, operators and functions

model term brief description common usage

fixed random

reserved mu the constant term or intercept
√

terms mv a term to estimate missing values
√

Trait multivariate counterpart to mu
√

units forms a factor with a level for each
experimental unit

√

operators . or : placed between labels to specify an
interaction

√ √

/ forms nested expansion (Section
6.5)

√ √

∗ forms factorial expansion (Section
6.5)

√ √

- placed before model terms to ex-
clude them from the model

√ √

, placed at the end of a line to in-
dicate that the model specification
continues on the next line

+ treated as a space
√ √

!{ ... !} placed around some model terms
when it is important the terms not
be reordered (Section 6.4)

√

commonly
used

at(f,n) condition on level n of factor f.
n may be a list of values

√ √

functions at(f) forms conditioning covariables for
all levels of factor f

√ √

fac(v ) forms a factor from v with a level
for each unique value in v

√

fac(v,y ) forms a factor with a level for each
combination of values in v and y

√

lin(f ) forms a variable from the factor
f with values equal to 1. . . n cor-
responding to level(1). . . level(n) of
the factor

√

spl(v [,k ]) forms the design matrix for the ran-
dom component of a cubic spline for
variable v

√
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Summary of reserved words, operators and functions

model term brief description common usage

fixed random

other
functions

and(t[,r]) adds r times the design matrix for
model term t to the previous design
matrix; r has a default value of 1. If
t is complex if may be necessary to
predefine it by saying -t and(t,r)

c(f) factor f is fitted with sum to zero
constraints

√

cos(v,r) forms cosine from v with period r
√

ge(f) condition on factor/variable f >= r
√

giv(f,n) associates the nth .giv G-inverse
with the factor f

√

gt(f) condition on factor/variable f > r
√

h(f) factor f is fitted Helmert constraints
√

ide(f) fits pedigree factor f without rela-
tionship matrix

√

inv(v[,r]) forms reciprocal of v + r
√

le(f) condition on factor/variable f <= r
√

leg(v,[-]n) forms n+1 Legendre polynomials of
order 0 (intercept), 1 (linear). . . n
from the values in v; the intercept
polynomial is omitted if v is pre-
ceded by the negative sign.

√

lt(f) condition on factor/variable f < r
√

log(v[,r]) forms natural logarithm of v + r
√

ma1(f) constructs MA1 design matrix for
factor f

√

ma1 forms an MA1 design matrix from
plot numbers

√

out(n) condition on observation n
√

out(n,t) condition on record n, trait t
√
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Summary of reserved words, operators and functions

model term brief description common usage

fixed random

pol(v,[-]n) forms n+1 orthogonal polynomials
of order 0 (intercept), 1 (linear). . . n
from the values in v; the intercept
polynomial is omitted if n is pre-
ceded by the negative sign.

√

pow(x, p[,o]) defines the covariable (x + o)p for
use in the model where x is a vari-
able in the data, p is a power and o
is an offset.

√

qtl(f,p) impute a covariable from marker
map information at position p

√

sin(v,r) forms sine from v with period r
√

sqrt(v[,r]) forms square root of v + r
√

uni(f) forms a factor with a level for each
record where factor f is non-zero

√

uni(f,n) forms a factor with a level for each
record where factor f has level n

√

xfa(f,k) is formally a copy of factor f with k
extra levels. This is used when fit-
ting extended factor analytic mod-
els (XFA, Table 7.3) of order k.

√
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Examples

ASReml code action

yield ∼ mu variety fits a model with a constant and fixed
variety effects

yield ∼ mu variety !r block fits a model with a constant term, fixed
variety effects and random block effects

yield ∼ mu time variety time.variety fits a saturated model with fixed time
and variety main effects and time by va-
riety interaction effects

livewt ∼ mu breed sex breed.sex !r sire fits a model with fixed breed, sex and
breed by sex interaction effects and ran-
dom sire effects

6.3 Fixed terms in the model

Primary fixed terms

The fixed list in the model formula

• describes the fixed covariates, factors and
interactions including special functions to
be included in the ANOVA table,

• generally begins with the reserved word mu
which fits a constant term, mean or inter-
cept, see Table 6.1.

NIN Alliance Trial 1989

variety
...

row 22

column 11

nin89.asd !skip 1 !mvinclude

yield ∼ mu variety !r repl,

!f mv

1 2

11 column AR1 .3

22 row AR1 .3
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Sparse fixed terms

The !f sparse fixed terms in model formula

• are the fixed covariates (for example, the
fixed lin(row) covariate now included in
the model formula), factors and interac-
tions including special functions and re-
served words (for example mv, see Table
6.1) for which ANOVA type tests are not
required,

• include large (>100 levels) terms.

NIN Alliance Trial 1989

variety
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl,

!f mv lin(row)

1 2

11 column AR1 .424

22 row AR1 .904

6.4 Random terms in the model

NIN Alliance Trial 1989

variety
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl,

!f mv 1 2

11 column AR1 .424

22 row AR1 .904

The !r random terms in the model formula

• comprise random covariates, factors and in-
teractions including special functions and
reserved words, see Table 6.1,

• involve an initial non-zero variance compo-
nent or ratio (relative to the residual vari-
ance) default 0.1; the initial value can be
specified after the model term or if the vari-
ance structure is not scaled identity, by syn-
tax described in detail in Chapter 7,

• an initial value of its variance (ratio) may be followed by a !GP (keep positive,
the default), !GU (unrestricted) or !GF (fixed) qualifier, see Table 7.4,

• use !{ and !} to group model terms that may not be reordered. Normally
ASReml will reorder the model terms in the sparse equations - putting smaller
terms first to speed up calculations. However, the order must be preserved if the
user defines a structure for a term which also covers the following term(s) (a way
of defining a covariance structure across model terms). Grouping is specifically
required if the model terms are of differing sizes (number of effects). For
example, for traits weaning weight and yearling weight, an animal model
with maternal weaning weight should specify model terms
!{ Trait.animal at(Trait,1).dam !}
when fitting a genetic covariance between the direct and maternal effects.
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6.5 Interactions and conditional factors

Interactions

• interactions are formed by joining two or more terms with a ‘.’ or a ‘:’, for
example, a.b is the interaction of factors a and b,

• interaction levels are arranged with the levels of the second factor nested within
the levels of the first,

• labels of factors including interactions are restricted to 31 characters of which
only the first 20 are ever displayed. Thus for interaction terms it is often
necessary to shorten the names of the component factors in a systematic way,
for example, if Time and Treatment are defined in this order, the interaction
between Time and Treatment could be specified in the model as Time.Treat;
remember that the first match is taken so that if the label of each field begins
with a different letter, the first letter is sufficient to identify the term,

• interactions can involve model functions,

• * indicates factorial expansion (up to 5 way)
a*b is expanded to a b a.b
a*b*c*d is expanded to

a b c d a.b a.c a.d b.c b.d c.d a.b.c a.b.d a.c.d b.c.d a.b.c.d

• / indicates nested expansion
a/b is expanded to a a.bNew

• a.(b c d) e is expanded to a.b a.c a.d e. This syntax is detected by the
string ‘.(’ and the closing parenthesis must occur on the same line and before
any comma indicating continuation. Any number of terms may be enclosed.
Each may have ‘-’ prepended to suppress it from the model. Each enclosed
term may have initial values and qualifiers following. For example,

yield∼site site.(lin(row) !r variety),
at(site,1).(row .3 col .2)

expands to

yield∼site site.lin(row) !r site.variety,
at(site,1).row .3 at(site,1).col .2
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Conditional factors

A conditional factor is a factor that is present only when another factor has a
particular level.

• individual components can be specified using the at(f,n) function (see Table
6.2), for example, at(site,1).row will fit row as a factor only for site 1,

• a complete set of conditional terms are specified by omitting the level spec-New

ification in the at(f) function provided the correct number of levels of f is
specified in the field definitions. Otherwise, a list of levels may be specified.

– at(f).b creates a series of model terms representing b nested within a for
any model term b. A model term is created for each level of a; each has
the size of b. For example, if site and geno are factors with 3 and 10 lev-
els respectively, then for at(site).geno ASReml constructs 3 model terms
at(site,1).geno at(site,2).geno at(site,3).geno, each with 10 levels,

– this is similar to forming an interaction except that a separate model term is
created for each level of the first factor; this is useful for random terms when
each component can have a different variance. The same effect is achieved
by using an interaction (e.g. site.geno) and associating a DIAG variance
structure with the first component (see Section 7.5).

6.6 Alphabetic list of model functions

Table 6.2 presents detailed descriptions of the model functions discussed above.
Note that some three letter function names may be abbreviated to the first letter.

Table 6.2: Alphabetic list of model functions and descriptions

model function action

and(t,r)

a(t,r)

overlays (adds) r times the design matrix for model term t to the existing
design matrix. Specifically, if the model up to this point has p effects and
t has a effects, the a columns of the design matrix for t are multiplied by
the scalar r (default value 1.0) and added to the last a of the p columns
already defined. The overlaid term must agree in size with the term it
overlays. This can be used to force a correlation of 1 between two terms
as in a diallel analysis
male and(female)

assuming the ith male is the same individual as the ith female. Note that
if the overlaid term is complex, it must be predefined; e.g.
Tr.male -Tr.female and(Tr.female).
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Alphabetic list of model functions and descriptions

model function action

at(f,n)

@(f,n)

New at(f)

@(f)

at(f,m,n)

@(f,m,n)

defines a binary variable which is 1 if the factor f has level n for the
record. For example, to fit a row factor only for site 3, use the expression
at(site,3).row.. The string @( is equivalent to at( for this function.

at(f) is expanded to a series of terms like at(f,i) where i takes the
values 01 to the number of levels of factor f . Since this command is
interpreted before the data is read, it is necessary to declare the number
of levels correctly in the field definition. This extended form may only
be used as the first term in an interaction.

at(f,i,j,k) is expanded to a series of terms at(f,i) at(f,j)
at(f,k). Similarly, at(f,i).X at(f,j).X at(f,k).X can be written as
at(f,i,j,k).X provided at(f,i,j,k) is written as the first component
of the interaction. Any number of levels may be listed.

cos(v,r) forms cosine from v with period r. Omit r if v is radians. If v is degrees,
r is 360.

con(f)

c(f)

apply sum to zero constraints to factor f. It is not appropriate for random
factors and fixed factors with missing cells. ASReml assumes you specify
the correct number of levels for each factor. The formal effect of the
con() function is to form a model term with the highest level formally
equal to minus the sum of the preceding terms.
With sum to zero constraints, a missing treatment level will generate a
singularity but in the first coefficient rather than in the coefficient corre-
sponding to the missing treatment. In this case, the coefficients will not
be readily interpretable. When interacting constrained factors, all cells
in the cross-tabulation should have data.

fac(v)

fac(v,y)

fac(v) forms a factor with a level for each value of x and any addi-
tional points inserted as discussed with the qualifiers !PPOINTS and !PVAL.
fac(v,y) forms a factor with a level for each combination of values from
v and y. The values are reported in the .res file.

giv(f,n)

g(f,n)

associates the nth .giv G-inverse with the factor. This is used when
there is a known (except for scale) G-structure other than the additive
inverse genetic relationship matrix. The G-inverse is supplied in a file
whose name has the file extension .giv described in Section 9.6



6 Command file: Specifying the terms in the mixed model 93

Alphabetic list of model functions and descriptions

model function action

h(f)

New
h(f) requests ASReml to fit the model term for factor f using
Helmert constraints. Neither Sum-to-zero nor Helmert constraints
generate interpretable effects if singularities occur. ASReml runs
more efficiently if no constraints are applied. Following is an exam-
ple of Helmert and sum-to-zero covariables for a factor with 5 levels.

H1 H2 H3 H4 C1 C2 C3 C4
F1 -1 -1 -1 -1 1 0 0 0
F2 1 -1 -1 -1 0 1 0 0
F3 0 2 -1 -1 0 0 1 0
F4 0 0 3 -1 0 0 0 1
F5 0 0 0 4 -1 -1 -1 -1

ide(f)

i(f)

is used to take a copy of a pedigree factor f and fit it without the ge-
netic relationship covariance. This facilitates fitting a second animal ef-
fect. Thus, to form a direct, maternal genetic and maternal environment
model, the maternal environment is defined as a second animal effect
coded the same as dams. viz. !r !{ animal dam !} ide(dam)

inv(v[,r]) forms the reciprocal of v + r. This may also be used to transform the
response variable.

leg(v,[-]n) forms n+1 Legendre polynomials of order 0 (intercept), 1 (linear). . . n
from the values in v; the intercept polynomial is omitted if n is preceded
by the negative sign. The actual values of the coefficients are written to
the .res file. This is similar to the pol() function described below.

lin(f)

l(f)

takes the coding of factor f as a covariate. The function is defined for f
being a simple factor, Trait and units. The lin(f) function does not
centre or scale the variable. Motivation: Sometimes you may wish to fit a
covariate as a random factor as well. If the coding is say 1. . .n, then you
should define the field as a factor in the field definition and use the lin()

function to include it as a covariate in the model. Do not centre the field
in this case. If the covariate values are irregular, you would leave the field
as a covariate and use the fac() function to derive a factor version.

log(v[,r]) forms the natural log of v + r. This may also be used to transform the
response variable.

ma1

ma1(f)

creates a first-differenced (by rows) design matrix which, when defining a
random effect, is equivalent to fitting a moving average variance structure
in one dimension. In the ma1 form, the first-difference operator is coded
across all data points (assuming they are in time/space order). Otherwise
the coding is based on the codes in the field indicated.

mu is used to fit the intercept/constant term. It is normally present and
listed first in the model. It should be present in the model if there are no
other fixed factors or if all fixed terms are covariates or contrasts except
in the special case of regression through the origin.
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Alphabetic list of model functions and descriptions

model function action

mv is used to estimate missing values in the response variable. Formally this
creates a model term with a column for each missing value. Each column
contains zeros except for a solitary -1 in the record containing the corre-
sponding missing value. This is used in spatial analyses so that computing
advantages arising from a balanced spatial layout can be exploited. The
equations for mv and any terms that follow are always included in the
sparse set of equations.

Missing values are handled in three possible ways during analysis (see
Section 6.10). In the simplest case, records containing missing values in
the response variable are deleted. For multivariate (including some re-
peated measures) analysis, records with missing values are not deleted but
ASReml drops the missing observation and uses the appropriate unstruc-
tured R-inverse matrix. For regular spatial analysis, we prefer to retain
separability and therefore estimate the missing value(s) by including the
special term mv in the model.

out(n)

out(n,t)
New

out(n), out(n,t) establishes a binary variable which is:
out(i) 1 if data relates to observation i, (trait 1), else is 0
out(i,t) 1 if data relates to observation i, (trait t), else is 0

The intention is that this be used to test/remove single observations for
example to remove the influence of an outlier or influential point. Possible
outliers will be evident in the plot of residuals versus fitted values (see
the .res file) and the appropriate record numbers for the out() term are
reported in the .res file. Note that i relates to the data analysed and will
not be the same as the record number as obtained by counting data lines
in the data file if there were missing observations in the data and they
have not been estimated. (To drop records based on the record number
in the data file, use the !D transformation in association with the !=V0

transformation.)

pol(v,n)

p(v,n)

forms a set of orthogonal polynomials of order |n| based on the unique
values in variate (or factor) v and any additional interpolated points,
see !PPOINTS and !PVAL in Table 5.4. It includes the intercept if n is
positive, omits it if n is negative. For example, pol(time,2) forms a
design matrix with three columns of the orthogonal polynomial of degree
2 from the variable time. Alternatively, pol(time,-2) is a term with two
columns having centred and scaled linear coefficients in the first column
and centred and scaled quadratic coefficients in the second column.

The actual values of the coefficients are written to the .res file. This
factor could be interacted with a design factor to fit random regression
models. The leg() function differs from the pol() function in the way
the quadratic and higher polynomials are calculated.
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Alphabetic list of model functions and descriptions

model function action

pow(x, p[,o]) defines the covariable (x+o)p for use in the model where x is a variable in
the data, p is a power and o is an offset. pow(x,0.5[,o]) is equivalent to
sqr(x[,o]); pow(x,0[,o]) is equivalent to log(x[,o]); pow(x,-1[,o])
is equivalent to inv(x[,o]).

qtl(f,r)
New

calculates an expected marker state from flanking marker information
at position r of the linkage group f(see !MM to define marker locations).
r may be specified as $TPn where $TPn has been previously internally
defined with a predict statement (see page 164). r should be given in
Morgans.

sin(v,r) forms sine from v with period r. Omit r if v is radians. If v is degrees, r
is 360.

spl(v [,k])

s(v [,k ])

In order to fit spline models associated with a variate v and k knot points
in ASReml, v is included as a covariate in the model and spl(v,k) as
a random term. The knot points can be explicitly specified using the
!SPLINE qualifier (Table 5.4). If k is specified but !SPLINE is not specified,
equally spaced points are used. If k is not specified and there are less than
50 unique data values, they are used as knot points. If there are more
than 50 unique points then 50 equally spaced points will be used. The
spline design matrix formed is written to the .res file. An example of
the use of spl() is
price ∼ mu week !r spl(week)

sqrt(v[,r]) forms the square root of v + r. This may also be used to transform the
response variable.

Trait is used with multivariate data to fit the individual trait means. It is
formally equivalent to mu but Trait is a more natural label for use with
multivariate data. It is interacted with other factors to estimate their
effects for all traits.

units creates a factor with a level for every record in the data file. This is used
to fit the ’nugget’ variance when a correlation structure is applied to the
residual.

uni(f[,0[,n]]) creates a factor with a new level whenever there is a level present for the
factor f. Levels (effects) are not created if the level of factor f is 0, missing
or negative. The size may be set in the third argument by setting the
second argument to zero.
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Alphabetic list of model functions and descriptions

model function action

uni(f,k[,n]) creates a factor with a level for every record subject to the factor level
of f equalling k, i.e. a new level is created for the factor whenever a
new record is encountered whose integer truncated data value from data
field f is k. Thus uni(site,2) would be used to create an independent
error term for site 2 in a multi-environment trial and is equivalent to
at(site,2).units. The default size of this model term is the number of
data records. The user may specify a lower number as the third argument.
There is little computational penalty from the default but the .sln file
may be substantially larger than needed.

xfa(f,k) Factor analytic models are discussed in Chapter 7. There are three forms,
FAk, FACVk and XFAk where k is the number of factors. The XFAk form is a
sparse formulation that requires an extra k levels to be inserted into the
mixed model equations for the k factors. This is achieved by the xfa(f,k)
model function which defines a design matrix based on the design matrix
for f augmented with k columns of zeros for the k factors.

6.7 Weights

Weighted analyses are achieved by using !WT weight as a qualifier to the response
variable. An example of this is y !WT wt ∼ mu A X where y is the name of the
response variable and wt is the name of a variate in the data containing weights.
If these are relative weights (to be scaled by the units variance) then this is all
that is required. If they are absolute weights, that is, the reciprocal of known
variances, use the !S2==1 qualifier described in Table 7.4 to fix the unit variance.
When a structure is present in the residuals the weights are applied as a matrix
product. If Σ is the structure and W is the diagonal matrix constructed from thecaution

square root of the values of the variate weight, then R−1 = WΣ−1W . Negative
weights are treated as zeros.

6.8 Generalized Linear Models

ASReml includes facilities for fitting the family of Generalized Linear Models
(GLMs, McCullagh and Nelder, 1994). GLMs are specified by qualifiers after the
name of the dependent variable but before the∼ character. Table 6.3 lists the link
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function qualifiers which relate the linear predictor (η) scale to the observation
(µ =E[y]) scale. Table 6.4 lists the distributions and other qualifiers.

A second dependent variable may be specified if a bivariate analysis is required
but it will always be treated as a normal variate (no syntax is provided for
specifying GLM attributes for it). The !ASUV qualifier is required in this situation
for the GLM weights to be utilized.

Table 6.3 Link qualifiers and functions

Qualifier Link Inverse Link Available with
!IDENTITY η = µ µ = η All

!SQRT η =
√

µ µ = η2 Poisson

!LOGARITHM η = ln(µ) µ = exp(η)
Normal, Poisson,
Negative Binomial,
Gamma

!INVERSE η = 1/µ µ = 1/η
Normal, Gamma,
Negative Binomial

!LOGIT η = µ/(1− µ) µ = 1
(1+exp(−η)) Binomial

!PROBIT η = Φ−1(µ) µ = Φ(η) Binomial

!COMPLOGLOG η = ln(−ln(1− µ)) µ = 1− e−eη
Binomial

where µ is the mean on the data scale and η = Xτ is the linear predictor on the
underlying scale.

Table 6.4: GLM qualifiers

qualifiers action

Distributions where µ is the mean on the data scale calculated from η = Xτ ,n
is the count specified by the !TOTAL qualifier, v is the variance
expression for the distribution, d is the deviance expression for
the distribution, y is the observation and φ is a parameter set
with the !PHI qualifier. The default link is listed first followed by
permitted alternatives.

!NORMAL [ !LOGARITHM | !INVERSE ]
The model is fitted on the log/inverse scale but the residuals are
on the natural scale.
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GLM qualifiers

qualifier action

!BINOMIAL

v = µ(1− µ)/n
d = 2n(yln(y/µ)
+(1−y)ln( 1−y

1−µ
))

[ !LOGIT | !IDENTITY | !PROBIT | !COMPLOGLOG ] [ !TOTAL n ]
Proportions or counts [r] are indicated if !TOTAL specifies the

variate containing the binomial totals. Proportions are assumed if
no response value exceeds 1. A binary variate [0, 1] is indicated if
!TOTAL is unspecified. The expression for d on the left applies when
y is proportions (or binary). The logit is the default link function.
The variance on the underlying scale is π2/3 ∼ 3.3 (underlying
logistic distribution) for the logit link.

!POISSON

v = µ
d = 2(yln(y/µ)

−(y − µ))

[ !LOGARITHM | !IDENTITY | !SQRT ]
Natural logarithms are the default link function. ASReml assumes

the Poisson variable is not negative.

!GAMMA

v = µ2/(φn)
d = 2n(−φln(φy

µ
)

+φy−µ
µ

)

[ !INVERSE | !IDENTITY | !LOGARITHM ] [ !PHI φ ] [ !TOTAL n ]
The inverse is the default link function. n is defined with the
!TOTAL qualifier and would be degrees of freedom in the typical
application to mean-squares. The default value of φ is 1.

!NEGBIN

v = µ + µ2/φ
d = 2((φ + y)ln(µ+φ

y+φ
)

+yln( y
µ
))

[ !LOGARITHM | !IDENTITY | !INVERSE ] [ !PHI φ ]
fits the Negative Binomial distribution. Natural logarithms are
the default link function. The default value of φ is 1.

General qualifiers

!AOD

New
Caution

requests an Analysis of Deviance table be generated. This is
formed by fitting a series of sub models for terms in the DENSE
part building up to the full model, and comparing the deviances.
An example if its use is
LS !BIN !TOT COUNT !AOD ∼ mu SEX GROUP

!AOD may not be used in association with PREDICT.

!DISP [h] includes an overdispersion scaling parameter (h) in the weights.
If !DISP is specified with no argument, ASReml estimates it as
the residual variance of the working variable. Traditionally it
is estimated from the deviance residuals, reported by ASReml as
Variance heterogeneity.
An example if its use is
count !POIS !DISP ∼ mu group
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GLM qualifiers

qualifier action

!OFFSET [o] is used especially with binomial data to include an offset in the
model where o is the number or name of a variable in the data.
The offset is only included in binomial and Poisson models (for
Normal models just subtract the offset variable from the response
variable), for example
count !POIS !OFFSET base !DISP ∼ mu group

The offset is included in the model as η = Xτ + o. The offset will
often be something like ln(n).

!TOTAL [n] is used especially with binomial data where n is the field containing
the total counts for each sample. If omitted, count is taken as 1.

Residual qualifiers control the form of the residuals returned in the .yht file. The predicted
values returned in the .yht file will be on the linear predictor
scale if the !WORK or !PVW qualifiers are used. They will be on the
observation scale if the !DEVIANCE, !PEARSON, !RESPONSE or !PVR

qualifiers are used.

!DEVIANCE produces deviance residuals, the signed square root of d/h from
Table 6.4 where h is the dispersion parameter controlled by the
!DISP qualifier. This is the default.

!PEARSON writes Pearson residuals, y−µ√
v

, in the .yht file

!PVR writes fitted values on the response scale in the .yht file. This is
the default.

!PVW writes fitted values on the linear predictor scale in the .yht file.

!RESPONSE produces simple residuals, y − µ

!WORK produces residuals on the linear predictor scale, y−µ
dµ/dη

6.9 Generalized Linear Mixed Models

This section was written by Damian Collins

There is the capacity to fit a wider class of models which include additional
random effects for non-normal error distributions. The inclusion of random terms
in a GLM is usually referred to as a Generalized Linear Mixed Model (GLMM).
For GLMMs, ASReml uses what is commonly referred to as penalized quasi-
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likelihood or PQL (Breslow and Clayton, 1993). The technique is also known
by other names, including Schall’s technique (Schall, 1991), pseudo-likelihood
(Wolfinger and O’Connell, 1993) and joint maximisation (Harville and Mee, 1984,
Gilmour et al., 1985). It is implemented in many statistical packages, for instance,
in the GLMM procedure (Welham, 2005) and the IRREML procedure of Genstat

(Keen, 1994), in MLwiN (Goldstein et al., 1998), in the GLMMIXED macro in
SAS and in the GLMMPQL function in R, to name a few.

The PQL technique is based on a first order Taylor series approximation to the
likelihood. It has been shown to perform poorly for certain types of GLMMs.
In particular, for binary GLMMs where the number of random effects is large
compared to the number of observations, it can underestimate the variance com-
ponents severely (50%) (e.g. Breslow and Lin, 1995, Goldstein and Rasbash,
1996, Rodriguez and Goldman, 2001, Waddington et al., 1994). For other types
of GLMMs, such as Poisson data with many observations per random effect, it
has been reported to perform quite well (e.g. Breslow, 2003). As well as the above
references, users can consult McCulloch and Searle (2001) for more information
about GLMMs.

Most studies investigating PQL have focussed on estimation bias. Much less
attention has been given to the wider inferential issues such as hypothesis testing.
In addition, the performance of this technique has only been assessed on a small
set of relatively simple GLMMs. Anecdotal evidence from users suggests that
this technique can give very misleading results in certain situations.

Therefore we cannot recommend the use of this technique for general use. It is
included in the current version of ASReml for advanced users. It is highly recom-Caution

mended that its use be accompanied by some form of cross-validatory assessment
for the specific dataset concerned. For instance, one way of doing this would be
by simulating data using the same design and using parameter values similar to
the parameter estimates achieved, such as used in Millar and Willis (1999).

The standard GLM Analysis of Deviance (!AOD) should not be used when there
are random terms in the model as the variance components are reestimated forCaution

each submodel.
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6.10 Missing values

Missing values in the response

It is sometimes computationally convenient to
estimate missing values, for example, in spa-
tial analysis of regular arrays, see example 3a
in Section 7.3. Missing values are estimated if
the model term mv is included in the model.
Formally, mv creates a factor with a covari-
ate for each missing value. The covariates are
coded 0 except in the record where the par-
ticular missing value occurs, where it is coded
-1.

NIN Alliance Trial 1989

variety
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2

11 column AR1 .424

22 row AR1 .904

The action when mv is omitted from the model depends on whether a univariate
or multivariate analysis is being performed. For a univariate analysis, ASReml

discards records which have a missing response. In multivariate analyses, all
records are retained and the R matrix is modified to reflect the missing value
pattern.

Missing values in the explanatory variables

ASReml will abort the analysis if it finds missing values in the design matrix unless
!MVINCLUDE or !MVREMOVE is specified, see Section 5.8. !MVINCLUDE causes the
missing value to be treated as a zero. !MVREMOVE causes ASReml to discard the
whole record. Records with missing values in particular fields can be explicitly
dropped using the !D transformation, Table 5.1.

Covariates: Treating missing values as zero in covariates is usually only sensible
if the covariate is centred (has mean of zero).

Design factors: Where the factor level is zero (or missing and the !MVINCLUDE
qualifier is specified), no level is assigned to the factor for that record.

6.11 Some technical details about model fitting in ASReml

Sparse versus dense

ASReml partitions the terms in the linear model into two parts: a dense set
and a sparse set. The partition is at the !r point unless explicitly set with
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the !DENSE data line qualifier or mv is included before !r, see Table 5.5. The
special term mv is always included in sparse. Thus random and sparse terms are
estimated using sparse matrix methods which result in faster processing. The
inverse coefficient matrix is fully formed for the terms in the dense set. The
inverse coefficient matrix is only partially formed for terms in the sparse set.
Typically, the sparse set is large and sparse storage results in savings in memory
and computing. A consequence is that the variance matrix for estimates is only
available for equations in the dense portion.

Ordering of terms in ASReml

The order in which estimates for the fixed and random effects in linear mixed
model are reported will usually differ from the order the model terms are specified.
Solutions to the mixed model equations are obtained using the methods outlined
Gilmour et al., 1995. ASReml orders the equations in the sparse part to maintain
as much sparsity as it can during the solution. After absorbing them, it absorbs
the model terms associated with the dense equations in the order specified.

Aliassing and singularities

A singularity is reported in ASReml when the diagonal element of the mixed model
equations is effectively zero (see the !TOLERANCE qualifier) during absorption. It
indicates there is either

• no data for that fixed effect, or

• a linear dependence in the design matrix means there is no information left to
estimate the effect.

ASReml handles singularities by using a generalized inverse in which the singular
row/column is zero and the associated fixed effect is zero. Which equations are
singular depends on the order the equations are processed. This is controlled by
ASReml for the sparse terms but by the user for the dense terms. They should
be specified with main effects before interactions so that the ANOVA table has
correct marginalization. Since ASReml processes the dense terms from the bottom
up, the first level (the last level processed) is often singular.

The number of singularities is reported in the .asr file immediately prior to
the REML log-likelihood (LogL) line for that iteration (see Section 13.3). The
effects (and associated standard or prediction error) which correspond to these
singularities are zero in the .sln file.



6 Command file: Specifying the terms in the mixed model 103

Singularities in the sparse fixed terms of the model may change with changesWarning

in the random terms included in the model. If this happens it will mean that
changes in the REML log-likelihood are not valid for testing the changes made to
the random model. This situation is not easily detected as the only evidence will
be in the .sln file where different fixed effects are singular. A likelihood ratio
test is not valid if the fixed model has changed.

Examples of aliassing

The sequence of models in Table 6.5 are presented to facilitate an understanding
of over-parameterised models. It is assumed that var is a factor with 4 levels,
trt with 3 levels and rep with 3 levels and that all var.trt combinations are
present in the data.

Table 6.5: Examples of aliassing in ASReml

model number of
singularities

order of fitting

yield ∼ var !r rep 0 rep var

yield ∼ mu var !r rep 1 rep mu var

first level of var is aliassed and set to
zero

yield ∼ var trt !r rep 1 rep var trt

var fully fitted, first level of trt is
aliassed and set to zero

yield ∼ mu var trt,

var.trt !r rep

8 rep mu var trt var.trt

first levels of both var and trt are
aliassed and set to zero, together with
subsequent interactions

yield ∼ mu var trt !r rep,

!f var.trt

8 [ var.trt rep ] mu var trt

var.trt fitted before mu, var and trt,
var.trt fully fitted; mu, var and trt

are completely singular and set to zero.
The order within [ var.trt rep ] is de-
termined internally.
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6.12 Analysis of variance table

The ANOVA table has 4 forms:
Source DF F_inc
Source DF F_inc F_con M
Source DF DDF_inc F_inc P_inc
Source DF DDF_con F_inc F_con M P_con

depending on whether conditional F-statistics are reported (requested by the
!FCON qualifier) and whether the denominator degrees of freedom are reported.
ASReml always reports incremental F-statistics (F inc) for the fixed model terms
(in the DENSE partition) conditional in the order the terms were nominated in
the model. Users should study Section 2.6 to understand the contents of this
table. The ’conditional maximum’ model used as the basis for the conditional
F-statistic is spelt out in the .aov file described in section .

The numerator degrees of freedom for each term is easily determined as the
number of non-singular equations involved in the term. However, in general,
calculation of the denominator degrees of freedom is not trivial. ASReml will by
default attempt the calculation for small analyses, by one of two methods. In
larger analyses, users can request the calculation be attempted using the !DDF
qualifier (page 68). Use !DDF -1 to prevent the calculation.
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7.1 Introduction

The subject of this chapter is variance model specification in ASReml. ASReml

allows a wide range of models to be fitted. The key concepts you need to under-
stand are

• the mixed linear model y = Xτ + Zu + e has a residual term e ∼ N(0, R)
and random effects u ∼ N(0, G),

• we use the terms R structure and G structure to refer to the independent
blocks of R and G respectively,

• R and G structures are typically formed as a direct product of particular
variance models,

• the order of terms in a direct product must agree with the order of effects in
the corresponding model term,

• variance models may be correlation matrices or variance matrices with equal or
unequal variances on the diagonal. A model for a correlation matrix (eg. AR1)
can be converted to an equal variance form (eg. AR1V) and to a heterogeneous
variance form (eg. AR1H),

• variances are sometimes estimated as variance ratios (relative to the residual
variance).

These issues are fully discussed in Chapter 2. In this chapter we begin by con-
sidering an ordered sequence of variance structures for the NIN variety trial (see
Section 7.3). This is to introduce variance modelling in practice. We then present
the topics in detail.

Non singular variance matrices

When undertaking the REML estimation, ASReml needs to invert each variance
matrix. For this it requires that the matrices be negative definite or positive
definite. They must not be singular. Negative definite matrices will have neg-
ative elements on the diagonal of the matrix and/or its inverse. The exception
is the XFA model which has been specifically designed to fit singular matrices
(Thompson et al. 2003).

Let x′Ax represent an arbitrary quadratic form for x = (x1, . . . , xn)′. The
quadratic form is said to be nonnegative definite if x′Ax ≥ 0 for all x ∈ Rn. If
x′Ax is nonnegative definite and in addition the null vector 0 is the only value
of x for which x′Ax = 0, then the quadratic form is said to be positive definite.
Hence the matrix A is said to be positive definite if x′Ax is positive definite, see
Harville (1997), pp 211.
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7.2 Variance model specification in ASReml

NIN Alliance Trial 1989

variety !A
...

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl

0 0 1

repl 1

repl 0 IDV 0.1

The variance models are specified in the AS-

Reml command file after the model line, as
shown in the code box. In this case just one
variance model is specified (for replicates, see
model 2b below for details). predict and
tabulate lines may appear after the model
line and before the first variance structure
line. These are described in Chapter 10.

Table 7.3 presents the full range of variance models available in ASReml. The
identifiers for specifying the individual variance models in the command file are
described in Section 7.5 under Specifying variance models in ASReml. Many of the
models are correlation models. However, these are generalized to homogeneous
variance models by appending V to the base identifier. They are generalized to
heterogeneous variance models by appending H to the base identifier.

7.3 A sequence of structures for the NIN data

Eight variance structures of increasing complexity are now considered for the NIN

field trial data (see Chapter 3 for an introduction to these data). This is to give
a feel for variance modelling in ASReml and some of the models that are possible.

Before proceeding, it is useful to link this section to the algebra of Chapter 2. InSee Section 2.1

this case the mixed linear model is

y = Xτ + Zu + e

where y is the vector of yield data, τ is a vector of fixed variety effects but would
also include fixed replicate effects in a simple RCB analysis and might also include
fixed missing value effects when spatial models are considered, u ∼ N(0, G) is
a vector of random effects (for example, random replicate effects) and the errors
are in e ∼ N(0, R). The focus of this discussion is on

• changes to u and e and the assumptions about these terms,

• the impact this has on the specification of the G structures for u and the R
structures for e.
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1 Traditional randomised complete block (RCB) analysis

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety repl

The only random term in a traditional RCB

analysis of these data is the (residual) error
term e ∼ N(0, σ2

eI224). The model therefore
involves just one R structure and no G struc-
tures (u = 0). In ASReml

• the error term is implicit in the model and
is not formally specified on the model line,

• the IID variance structure (R = σ2
eI224) is

the default for error.

Important The error term is always present in the model but its variance structure
does not need to be formally declared when it has the default IID structure.

2a Random effects RCB analysis

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl

The random effects RCB model has 2 random
terms to indicate that the total variation in
the data is comprised of 2 components, a ran-
dom replicate effect ur ∼ N(0, γrσ

2
eI4) where

γr = σ2
r/σ2

e , and error as in 1. This model in-
volves both the original implicit IID R struc-
ture and an implicit IID G structure for the
random replicates. In ASReml

• IID variance structure is the default for ran-
dom terms in the model.

For this reason the only change to the former command file is the insertion of !r
before repl. Important All random terms (other than error which is implicit)See Section 6.4

must be written after !r in the model specification line(s).
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2b Random effects RCB analysis with a G structure specified

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl

0 0 1

repl 1

4 0 IDV 0.1

This model is equivalent to 2a but we explic-
itly specify the G structure for repl, that is,
ur ∼ N(0, γrσ

2
eI4), to introduce the syntax.

The 0 0 1 line is called the variance headerSee Section 7.4

line. In general, the first two elements of this
line refer to the R structures and the third el-
ement is the number of G structures. In this
case 0 0 tells ASReml that there are no ex-
plicit R structures but there is one G structure
(1). The next two lines define the G structure.See page 120

The first line, a G structure header line, links
the structure that follows to a term in the lin-
ear model (repl) and indicates that it involves
one variance model (1) (a 2 would mean that the structure was the direct product
of two variance models). The second line tells ASReml that the variance model
for replicates is IDV of order 4 (σ2

rI4). The 0.1 is a starting value for γr = σ2
r/σ2

e ;
a starting value must be specified. Finally, the second element (0) on the last
line of the file indicates that the effects are in standard order. There is almost
always a 0 (no sorting) in this position for G structures. The following points
should be noted:

• the 4 on the final line could have been written as repl to give

repl 0 IDV 0.1

This would tell ASReml that the order or dimension of the IDV variance model
is equal to the number of levels in repl (4 in this case),

• when specifying G structures, the user should ensure that one scale parameter
is present. ASReml does not automatically include and estimate a scale param-
eter for a G structure when the explicit G structure does not include one. For
this reason

– the model supplied when the G structure involves just one variance model
must not be a correlation model (all diagonal elements equal 1),See Sections 2.1

and 7.5 – all but one of the models supplied when the G structure involves more than
one variance model must be correlation models; the other must be either
an homogeneous or a heterogeneous variance model (see Section 7.5 for the
distinction between these models; see also 5 for an example),

• an initial value must be supplied for all parameters in G structure definitions.
ASReml expects initial values immediately after the variance model identifier
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or on the next line (0.1 directly after IDV in this case),

– 0 is ignored as an initial value on the model line,
– if there is no initial value after the identifier, ASReml will look on the next

line,
– if ASReml does not find an initial value it will stop and give an error messageSee Chapter 14

in the .asr file,

• in this case V = σ2
rZrZ

′
r +σ2

eI224 which is fitted as σ2
e (γrZrZ

′
r + I224) where

γr is a variance ratio (γr = σ2
r/σ2

e) and σ2
e is the scale parameter. Thus 0.1 is

a reasonable initial value for γr regardless of the scale of the data.

3a Two-dimensional spatial model with spatial correlation in one direc-
tion

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !f mv

1 2 0

11 column ID

22 row AR1 0.3

This code specifies a two-dimensional spatial
structure for error but with spatial correla-
tion in the row direction only, that is, e ∼
N(0, σ2

eI11 ⊗ Σr(ρr)). The variance header
line tells ASReml that there is one R struc-
ture (1) which is a direct product of two vari-
ance models (2); there are no G structures (0).
The next two lines define the components ofSee page 118

the R structure. A structure definition line
must be specified for each component. For
V = σ2

eI11⊗Σ(ρr), the first matrix is an iden-
tity matrix of order 11 for columns (ID), the
second matrix is a first order autoregressive
correlation matrix of order 22 for rows (AR1) and the variance scale parameter
σ2

e is implicit. Note the following:

• placing column and row in the second position on lines 1 and 2 respectively
tells ASReml to internally sort the data rows within columns before processing
the job. This is to ensure that the data matches the direct product structure
specified. If column and row were replaced with 0 in these two lines, ASReml

would assume that the data were already sorted in this order (which is not
true in this case),

• the 0.3 on line 2 is a starting value for the autoregressive row correlation. Note
that for spatial analysis in two dimensions using a separable model, a complete
matrix or array of plots must be present. To achieve this we augmented the
data with the 18 records for the missing yields as shown on page 30. In the
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augmented data file the yield data for the missing plots have all been made
NA (one of the missing value indicators in ASReml) and variety has been
arbitrarily coded LANCER for all of the missing plots (any of the variety names
could have been used),

• !f mv is now included in the model specification. This tells ASReml to estimate
the missing values. The !f before mv indicates that the missing values are fixedSee Chapter 13

effects in the sparse set of terms,See Sections 6.3

and 6.11 • unlike the case with G structures, ASReml automatically includes and esti-
mates a scale parameter for R structures (σ2

e for V = σ2
e (I11 ⊗Σ(ρr)) in this

case). This is why the variance models specified for row (AR1) and column
(ID) are correlation models. The user could specify a non-correlation modelSee Sections 2.1

and 7.5 (diagonal elements 6= 1) in the R structure definition, for example, ID could
be replaced by IDV to represent V = σ2

e(σ
2
cI11)⊗Σ(ρr). However, IDV would

then need to be followed by !S2==1 to fix σ2
e at 1 and prevent ASReml trying

(unsuccessfully) to estimate both parameters as they are confounded: the scaleSee Section 7.7

parameter associated with IDV and the implicit error variance parameter, see
Section 2.1 under Combining variance models. Specifically, the code

11 column IDV 48 !S2==1

would be required in this case, where 48 is the starting value for the variances.
This complexity allows for heterogeneous error variance.

3b Two-dimensional separable autoregressive spatial model

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !f mv

1 2 0

11 column AR1 0.3

22 row AR1 0.3

This model extends 3a by specifying a first
order autoregressive correlation model of or-
der 11 for columns (AR1). The R structure
in this case is therefore the direct product of
two autoregressive correlation matrices that
is, V = σ2

eΣc(ρc) ⊗ Σr(ρr), giving a two-
dimensional first order separable autoregres-
sive spatial structure for error. The starting
column correlation in this case is also 0.3.
Again note that σ2

e is implicit.
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3c Two-dimensional separable autoregressive spatial model with mea-
surement error

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r units,

!f mv

1 2 0

11 column AR1 0.3

22 row AR1 0.3

This model extends 3b by adding a random
units term. Thus
V = σ2

e (γηI242 + Σc(ρc)⊗Σr(ρr)) . The re-
served word units tells ASReml to construct
an additional random term with one level for
each experimental unit so that a second (in-
dependent) error term can be fitted. A units
term is fitted in the model in cases like this,
where a variance structure is applied to the
errors. Because a G structure is not explic-
itly specified here for units, the default IDV
structure is assumed. The units term is often fitted in spatial models for field
trial data to allow for a nugget effect.

4 Two-dimensional separable autoregressive spatial model with random
replicate effects

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2 1

11 column AR1 0.3

22 row AR1 0.3

repl 1

repl 0 IDV 0.1

This is essentially a combination of 2b and 3c
to demonstrate specifying an R structure and
a G structure in the same model. The varianceSee Section 7.4

header line 1 2 1 indicates that there is one R
structure (1) that involves two variance mod-
els (2) and is therefore the direct product of
two matrices, and there is one G structure (1).
The R structures are defined first so the next
two lines are the R structure definition lines
for e, as in 3b. The last two lines are the G
structure definition lines for repl, as in 2b. In
this case V = σ2

e (γrI242 + Σc(ρc)⊗Σr(ρr)) .
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5 Two-dimensional separable autore-
gressive spatial model defined as a G structure

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety,

!r row.column

0 0 1

row.column 2

row 0 AR1V 0.3 0.1

column 0 AR1 0.3

This model is equivalent to 3c but with the
spatial model defined as a G structure rather
than an R structure. As discussed in 2b,

• all but one of the models supplied when theSee Section 7.7

G structure involves more than one variance
model must be correlation models,

• the other model must not be a correlation
model, that is, the other model must be
either an homogeneous or a heterogeneous
variance model, and an initial value for the
scale parameter must be supplied.

For this reason, the model for rows is now AR1V and an initial value of 0.1 has been
supplied for the scale parameter. In this case V = σ2

e (γrcΣc(ρc)⊗Σr(ρr) + I224) .

Use of row.column as a G structure is a useful approach for analysing incomplete
spatial arrays. This approach will often run faster for large trials but requires
more memory.

Note that we have used the original version of the data and !f mv is omittedImportant

from this analysis since row.column is fitted as a G structure. If we had used
the augmented data nin89aug.asd we would still omit !f mv and ASReml would
discard the records with missing yield.
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Table 7.1: Sequence of variance structures for the NIN field trial data

ASReml syntax extra random terms residual error term

term G structure term R structure

models models

1 2 1 2

1 yield ∼ mu variety repl - - error ID -

2a yield ∼ mu variety,

!r repl

repl IDV error ID -

2b yield ∼ mu variety,

!r repl

0 0 1

repl 1

4 0 IDV 0.1

repl IDV error ID -

3a yield ∼ mu variety,

!f mv

1 2 0

11 column ID

22 row AR1 0.3

- - column.row ID AR1

3b yield ∼ mu variety,

!f mv

1 2 0

11 column AR1 0.3

22 row AR1 0.3

- - column.row AR1 AR1

3c yield ∼ mu variety,

!r units !f mv

1 2 0

11 column AR1 0.3

22 row AR1 0.3

units IDV column.row AR1 AR1

4 yield ∼ mu variety,

!r repl !f mv

1 2 1

11 column AR1 0.3

22 row AR1 0.3

repl 1

4 0 IDV 0.1

repl IDV column.row AR1 AR1

5 yield ∼ mu variety,

!r column.row

0 0 1

column.row 2

column 0 AR1 .3

row 0 AR1V 0.3 0.1

column.row AR1 AR1V error ID -
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7.4 Variance structures

The previous sections have introduced variance modelling in ASReml using the
NIN data for demonstration. In this and the remaining sections the syntax is
described formally. However, where appropriate we continue to reference the
example.

General syntax

Variance model specification in ASReml has the following general form
[variance header line
[R structure definition lines ]
[G structure header and definition lines ]
[variance parameter constraints ]]

• variance header line specifies the number of R and G structures,

• R structure definition lines define the R structures (variance models for error)
as specified in the variance header line,

• G structure header and definition lines define the G structures (variance models
for the additional random terms in the model) as specified in the variance
header line; these lines are always placed after any R structure definition lines,

• variance parameter constraints are included if parameter constraints are to be
imposed, see the !VCC c qualifier in Table 5.5 and Section 7.9 on constraints
between and within variance structures.

A schematic outline of the variance model specification lines (variance header
line, and R and G structure definition lines) is presented in Table 7.2 using the
variance model of 4 for demonstration.
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Table 7.2: Schematic outline of variance model specification in ASReml

general syntax model 4

variance header line [s [c [g]]] 1 2 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
R structure definition lines S 1 C 1

C 2
...
C c

11 column AR1 0.3

22 row AR1 0.3
...

-

S 2 C 1
...
C c

-
...

-

...
...

...

S s C 1
...
C c

-
...

-

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G structure definition lines G 1 repl 1

4 0 IDV 0.1

G 2 -

...
...

G g -
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Variance header line

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2 1

22 row AR1 0.3

11 column AR1 0.3

repl 1

repl 0 IDV 0.1

The variance header line is of the form
[s [c [g]]]

• s and c relate to the R structures, g is the
number of G structures,

• the variance header line may be omitted
if the default IID R structure is required,
no G structures are being explicitly defined
and there are no parameter constraints (see
!VCC and examples 1 and 2a),

• s is used to code the number of independent
sections in the error term

– if s = 0, the default IID R structure is assumed and no R structure definition
lines are required (as in examples 2b and 5),

– if s > 0, s R structure definitions are required, one for each of the s sections
(as in examples 3a, 3b, 3c and 4),

– for the analysis of multi-section data s can be replaced by the name of a
factor with the appropriate number of levels, one for each section,

• c is the number of component variance models involved in the variance struc-
ture for the error term for each section; for example, 3a, 3b and 3c have
column.row as the error term and the variance structure for column.row in-
volves 2 variance models, the first for column and the second for row,

– c has a default value of 2 when s is not specified as zero,

• g is the number of variance structures (G structures) that will be explicitly
specified for the random terms in the model.

R and G structures are now discussed with reference to s, c and g. As already
noted, each variance structure may involve several variance models which relate
to the individual terms involved in the random effect or error. For example, a
two factor interaction may have a variance model for each of the two factors
involved in the interaction. Variance models are listed in Table 7.3. As indicatedSee Table 7.3

in the discussion of 2b, care must be taken with respect to scale parameters whenSee Section 7.7

combining variance models (see also Section 7.7).
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R structure definition

For each of the s sections there must be c R structure definitions. Each definition
may take several lines. Each R structure definition specifies a variance model and
has the form

NIN Alliance Trial 1989

variety !A
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2 1

11 column AR1 0.3

22 row AR1 0.3

repl 1

repl 0 IDV 0.1

order [field model [initial values] [qualifiers]
[additional initial values]]

• order is either the number of levels in the
corresponding term or the name of a factor
that has the same number of levels as the
term, for example,

11 column AR1 0.5

is equivalent to

column column AR1 0.5

when column is a factor with 11 levels,

• field is the name of the data field (variate or factor) that corresponds to the
term and therefore indexes the levels of the term;

– ASReml uses this field to sort the units so they match the R structure,
– in the example the data will be sorted internally rows within columns for

the analysis but the residuals will be printed in the .yht file in the original
order (which is actually rows within columns in this case).
Important It is assumed that the joint indexing of the components uniquely
defines the experimental units,

– if field is a variable, it can be plot coordinates provided the plots are in a
regular grid. Thus in this example

11 lat AR1 0.3
22 long AR1 0.3

is valid because lat gives column position and long gives row position, and
the positions are on a regular grid. The autoregressive correlation values will
still be on an plot index basis (1, 2, 3, . . . ), not on a distance basis (10m,
20m, 30m, . . . ),

– if the data is sorted appropriately for the order the models are specified, set
field to 0,
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• model specifies the variance model for the term, for example,

22 row AR1 0.3

chooses a first order autoregressive model for the row error process,

– all the variance models available in ASReml are listed in Table 7.3,
– these models have associated variance parameters,
– a error variance component (σ2

e for the example, see Section 7.3) is auto-
matically estimated for each section,

– the default model is ID,

• initial values are initial or starting values for the variance parameters and must
be supplied, for example,

22 row AR1 0.3

chooses an autoregressive model for the row error process (see Table 7.1) with
a starting value of 0.3 for the row correlation,

• qualifiers tell ASReml to modify the variance model in some way; the qualifiers
are described in Table 7.4,

• additional initial values are read from the following lines if there are not enough
initial values on the model line. Each variance model has a certain number of
parameters. If insufficient non zero values are found on the model line ASReml

expects to find them on the following line(s),

– initial values of 0.0 will be ignored if they are on the model line but are
accepted on subsequent lines,

– the notation n*v (for example, 5 * 0.1) is permitted on subsequent lines
(but not the model line) when there are n repeats of a particular initial value
v,

– only in a few specified cases is 0 permitted as an initial value of a non-zero
parameter.
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G structure header and definition lines

There are g sets of G structure definition lines and each set is of the form

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl,

!f mv

1 2 1

22 row AR1 0.3

11 column AR1 0.3

repl 1

repl 0 IDV 0.1

model term d
order [key model [initial values] [qualifier]
[additional initial values]]
order [key model [initial values] [qualifier]
[additional initial values]]
...
order [key model [initial values] [qualifier]
[additional initial values]]

• model term is the term from the linear
model to which the variance structure ap-
plies; the variance structure may cover ad-
ditional terms in the linear model, see Sec-
tion 7.8

• d is the number of variance models and hence direct product matrices involved
in the G structure; the following lines define the d variance models,

• order is either the number of levels in the term or the name of a factor that
has the same number of levels as the component,

• key is usually zero but for power models (EXP, GAU,. . . ) provides the distance
data needed to construct the model,

• model is the ASReml variance model identifier/acronym selected for the term,

– variance models are listed in Table 7.3,
– these models have associated variance parameters,

• initial values are initial or starting values for the variance parameters, the
values for initial values are as described above for R structure definition lines,

• qualifier tells ASReml to modify the variance model in some way; the qualifiers
are described in Table 7.4.

7.5 Variance model description

Table 7.3 presents the full range of variance models, that is, correlation, homo-
geneous variance and heterogeneous variance models available in ASReml. The
table contains the model identifier, a brief description, its algebraic form and the
number of parameters. The first section defines (BASE) correlation models and
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in the next section we show how to extend them to form variance models. The
second section defines some models parameterized as variance/covariance matri-
ces rather than as correlation matrices. The third section covers some special
cases where the covariance structure is known except for the scale.

Table 7.3: Details of the variance models available in ASReml

base
identifier

description algebraic
form

number of parameters†

corr homo’s hetero’s
variance variance

Correlation models

One-dimensional, equally spaced

ID identity Cii = 1, Cij = 0, i 6= j 0 1 ω

AR[1] 1
st

order
autoregressive

Cii = 1, Ci+1,i = φ1

Cij = φ1Ci−1,j , i > j + 1

|φ1 | < 1

1 2 1 + ω

AR2 2
nd

order
autoregressive

Cii = 1,

Ci+1,i = φ1/(1− φ2)

Cij = φ1Ci−1,j +φ2Ci−2,j , i > j +1

|φ1 | < (1− φ2), |φ2 | < 1

2 3 2 + ω

AR3

New
3

rd

order
autoregressive

Cii = 1, Ω = 1− φ2 − φ3(φ1 + φ3),

Ci+1,i = (φ1 + φ2φ3)/Ω,

3 4 3 + ω

Ci+2,i = (φ1(φ1 + φ3) + φ2(1− φ2))/Ω,

Cij = φ1Ci−1,j + φ2Ci−2,j + φ3Ci−3,j , i > j + 2

|φ1 | < (1− φ2), |φ2 | < 1, |φ3 | < 1

SAR symmetric
autoregressive

Cii = 1,

Ci+1,i = φ1/(1 + φ2
1/4)

Cij = φ1Ci−1,j − φ2
1/4 Ci−2,j ,

i > j + 1

|φ1 | < 1

1 2 1 + ω

SAR2

New
constrained
autoregressive 3
used for
competition

as for AR3 using

φ1 = γ1 + 2γ2 ,

φ2 = −γ2(2γ1 + γ2),

φ3 = γ1γ2
2 ,

2 3 2 + ω
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Details of the variance models available in ASReml

base
identifier

description algebraic
form

number of parameters†

corr homo’s hetero’s
variance variance

MA[1] 1
st

order
moving average

Cii = 1,

Ci+1,i = −θ1/(1 + θ2
1)

Cji = 0, j > i + 2

|θ1 | < 1

1 2 1 + ω

MA2 2
nd

order
moving average

Cii = 1,

Ci+1,i = −θ1(1− θ2)/(1 + θ2
1 + θ2

2)

Ci+2,i = −θ2/(1 + θ2
1 + θ2

2)

Cji = 0, j > i + 2

θ2 ± θ1 < 1

|θ1 | < 1, |θ2 | < 1

2 3 2 + ω

ARMA autoregressive
moving average

Cii = 1,

Ci+1,i = (θ − φ)(1− θφ)/(1 +

θ2 − 2θφ)

Cji = φCj−1,i , j > i + 1

|θ| < 1, |φ| < 1

2 3 2 + ω

CORU uniform
correlation

Cii = 1, Cij = φ, i 6= j 1 2 1 + ω

CORB banded
correlation

Cii = 1

Ci+j,i = φj , 1 ≤ j ≤ ω − 1

|φj | < 1

ω − 1 ω 2ω − 1

CORG general
correlation
CORGH = US

Cii = 1

Cij = φij , i 6= j

|φij | < 1

ω(ω−1)
2

ω(ω−1)
2

+1 ω(ω−1)
2

+ ω

One-dimensional unequally spaced

EXP exponential Cii = 1

Cij = φ|xi−xj |, i 6= j

xi are coordinates
0 < φ < 1

1 2 1 + ω
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Details of the variance models available in ASReml

base
identifier

description algebraic
form

number of parameters†

corr homo’s hetero’s
variance variance

GAU gaussian Cii = 1

Cij = φ(xi−xj)2 , i 6= j

xi are coordinates

0 < φ < 1

1 2 1 + ω

Two-dimensional irregularly spaced

x and y vectors of coordinates

θij = min(dij/φ1, 1)

dij is euclidean distance

IEXP isotropic

exponential

Cii = 1

Cij = φ|xi−xj |+|yi−yj |, i 6= j

0 < φ < 1

1 2 1 + ω

IGAU isotropic

gaussian

Cii = 1

Cij = φ(xi−xj)2+(yi−yj)2 , i 6= j

0 < φ < 1

1 2 1 + ω

IEUC isotropic

euclidean

Cii = 1

Cij = φ
√

(xi−xj)2+(yi−yj)2 , i 6= j

0 < φ < 1

1 2 1 + ω

LVR

New
linear variance Cij = (1− θij)

0 < φ1

1 2 1 + ω

SPH

New
spherical Cij = 1− 3

2
θij + 1

2
θ3

ij

0 < φ1

1 2 1 + ω

CIR

New
circular (Web-

ster & Oliver,

2001, p 113)

Cij = 1

− 2
π
(θij

√
1− θ2

ij + sin−1θij)

0 < φ1

1 2 1 + ω

AEXP anisotropic ex-
ponential

Cii = 1

Cij = φ
|xi−xj |
1 φ

|yi−yj |
2

0 < φ1 < 1, 0 < φ2 < 1

2 3 2+ω
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Details of the variance models available in ASReml

base
identifier

description algebraic
form

number of parameters†

corr homo’s hetero’s
variance variance

AGAU anisotropic
gaussian

Cii = 1

Cij = φ
(xi−xj)2

1 φ
(yi−yj)2

2

0 < φ1 < 1, 0 < φ2 < 1

2 3 2 + ω

MATk
New

Matérn with
first 1 ≤ k ≤ 5
parameters
specified by the
user

Cij =Matérn: see text

φ > 0 range, ν shape(0.5)

δ > 0 anisotropy ratio(1),

α anisotropy angle(0),

λ(1|2) metric(2)

k k+1 k + ω

Additional heterogeneous variance models

DIAG diagonal = IDH Σii = φi Σij = 0, i 6= j - - ω

US unstructured
general covari-
ance matrix

Σij = φij - -
ω(ω+1)

2

OWNk user explicitly
forms V and
∂V

- - k

ANTE[1]

ANTEk
1

st

k
th

k order
antede-
pendence

1 ≤ k ≤ ω − 1

Σ
−1

= UDU ′

Dii = di , Dij = 0, i 6= j

Uii = 1, Uij = uij , 1 ≤ j − i ≤ k

U ij = 0, i > j

- -
ω(ω+1)

2

CHOL[1]

CHOLk
1

st

k
th

k order
cholesky
(banded
form)

1 ≤ k ≤ ω − 1

Σ = LDL′

Dii = di , Dij = 0, i 6= j

Lii = 1, Lij = lij , 1 ≤ i− j ≤ k;
Lij = 0, i− j > k;

- -
ω(ω+1)

2

CHOL[1]C

CHOLkC
1

st

k
th

k order
cholesky
(column
form)

1 ≤ k ≤ ω − 1

Σ = LDL′

Dii = di , Dij = 0, i 6= j

Lii = 1, Lij = lij , 1 ≤ j < i;
Lij = 0., k + 1 ≤ j < i;

- -
ω(ω+1)

2
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Details of the variance models available in ASReml

base
identifier

description algebraic
form

number of parameters†

corr homo’s hetero’s
variance variance

FA[1]

FAk
1

st

k
th

k order
factor
analytic

Σ = DCD,
C = FF ′ + E,
F contains k correlation factors
E diagonal
DD = diag (Σ)

- - ω + ω
kω + ω

FACV[1]

FACVk
1

st

k
th

k order
factor
analytic
covariance
form

Σ = ΓΓ′ + Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - ω + ω
kω + ω

XFA[1]

XFAk
1

st

k
th

k order
extended
factor
analytic
covariance
form

Σ = ΓΓ′ + Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - ω + ω
kω + ω

Inverse relationship matrices‡

AINV inverse relationship matrix derived from pedigree 0 1 -

GIV1 generalized inverse number 1 0 1 -

...
...

...
...

...

GIV6 generalized inverse number 6 0 1 -

† This is the number of values the user must supply as initial values where ω is the dimension of the
matrix. The homogeneous variance form is specified by appending V to the correlation basename; the
heterogeneous variance form is specified by appending H to the correlation basename
‡ These must be associated with 1 variance parameter unless used in direct product with another structure
which provides the variance.
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Forming variance models from correlation models

The base identifiers presented in the first part of Table 7.3 are used to specify the
correlation models. The corresponding homogeneous and heterogeneous variance
models are specified by appending V and H to the base identifiers respectively.
This convention holds for most models. However, no V or H should be appended
to the base identifiers for the heterogeneous variance models at the end of the
table (from DIAG on).

In summary, to specify

• a correlation model, provide the base identifier given in Table 7.3, for example

EXP .1

is an exponential correlation model,

• an homogeneous variance model, append a V to the base identifier and provide
an additional initial value for the variance, for example,

EXPV .1 .3

is an exponential variance model,

• a heterogeneous variance model, append an H to the base identifier and provide
additional initial values for the diagonal variances, for example,

CORUH .1 .3 .4 .2

is a 3× 3 matrix with uniform correlations of 0.1 and heterogeneous variances
0.3, 0.4 and 0.2.

Important See Section 7.7 for rules on combining variance models and important
notes regarding initial values.

The algebraic forms of the homogeneous and heterogeneous variance models are
determined as follows. Let C (ω×ω) = [Cij ] denote the correlation matrix for
a particular correlation model. If Σ (ω×ω) is the corresponding homogeneous
variance matrix then

Σ = σ2C.

It has just one more parameter than the correlation model. For example, the
homogeneous variance model corresponding to the ID correlation model has vari-
ance matrix Σ = σ2Iω (specified IDV in the ASReml command file, see below)
and one parameter. The initial values for the variance parameters are listed after
the initial values for the correlation parameters. For example, in
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AR1V 0.3 0.5

0.3 is the initial spatial correlation parameter and 0.5 is the initial variance
parameter value.

Similarly, if Σ (ω×ω)
h is the heterogeneous variance matrix corresponding to C,

then

Σh = DCD

where D (ω×ω) = diag (σi) . In this case there are an additional ω parameters.
For example, the heterogeneous variance model corresponding to ID is specified
IDH in the ASReml command file (see below), involves the ω parameters σ2

1
. . . σ2

ω

and is the variance matrix

Σh =




σ2
1

0 . . . 0
0 σ2

2
. . . 0

...
...

. . .
...

0 0 . . . σ2
ω




Notes on the variance models

These notes provide additional information on the variance models defined in
Table 7.3.

• the IDH and DIAG models fit the same diagonal variance structure,

• the CORGH and US models fit the same completely general variance structure
parameterized differently,

• in CHOLk models Σ = LDL′ where L is lower triangular with ones on the
diagonal, D is diagonal and k is the number of non-zero off diagonals in L,

• in CHOLkC models Σ = LDL′ where L is lower triangular with ones on theNew

diagonal, D is diagonal and k is the number of non-zero sub diagonal columns
in L. This is somewhat similar to the factor analytic model.

• in ANTEk models Σ−1 = UDU ′ where U is upper triangular with ones on the
diagonal, D is diagonal and k is the number of non-zero off diagonals in U ,

• the CHOLk, CHOLkC and ANTEk models are equivalent to the US structure, that
is, the full variance structure, when k is ω − 1,

• initial values for US, CHOLk CHOLkC and ANTEk structures are given in the form
of a US matrix which is specified lower triangle row-wise, viz
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


σ11

σ21 σ22

σ31 σ32 σ33


 ,

that is, initial values are given in the order, 1 = σ11 , 2 = σ21 , 3 = σ22 , . . .

• the US model is associated with several special features of ASReml. When
used in the R structure for multivariate data, ASReml automatically recognises
patterns of missing values in the responses (see Chapter 8). Also, there is an
option to update its values by EM rather than AI when its AI updates make
the matrix non positive definite.

• The Matérn class of isotropic covariance models is now described. ASRemlNew

uses an extended Matérn class which accomodates geometric anisotropy and a
choice of metrics for random fields observed in two dimensions. This extension,
described in detail in Haskard (2006), is given by

ρ(h;φ) = ρM (d(h; δ, α, λ);φ, ν)

where h = (hx, hy)T is the spatial separation vector, (δ, α) governs geometric
anisotropy, (λ) specifies the choice of metric and (φ, ν) are the parameters of
the Matérn correlation function. The function is

ρM (d; φ, ν) =
{
2ν−1Γ(ν)

}−1
(

d

φ

)ν

Kν

(
d

φ

)
, (7.1)

where φ > 0 is a range parameter, ν > 0 is a smoothness parameter, Γ(·) is the
gamma function, Kν(.) is the modified Bessel function of the third kind of order
ν (Abramowitz and Stegun, 1965, section 9.6) and d is the distance defined in
terms of X and Y axes: hx = xi − xj ; hy = yi − yj ; sx = cos(α)hx + sin(α)hy;
sy = cos(α)hx − sin(α)hy; d = (δ|sx|λ + |sy|λ/δ)1/λ.

For a given ν, the range parameter φ affects the rate of decay of ρ(·) with
increasing d. The parameter ν > 0 controls the analytic smoothness of the
underlying process us, the process being dνe − 1 times mean-square differen-
tiable, where dνe is the smallest integer greater than or equal to ν (Stein, 1999,
page 31). Larger ν correspond to smoother processes. ASReml uses numerical
derivatives for ν when its current value is outside the interval [0.2,5].

When ν = m + 1
2 with m a non-negative integer, ρM (·) is the product of

exp(−d/φ) and a polynomial of degree m in d. Thus ν = 1
2 yields the exponen-

tial correlation function, ρM (d; φ, 1
2) = exp(−d/φ), and ν = 1 yields Whittle’s

elementary correlation function, ρM (d; φ, 1) = (d/φ)K1(d/φ) (Webster and
Oliver, 2001).

When ν = 1.5 then

ρM (d;φ, 1.5) = exp(−d/φ)(1 + d/φ)
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which is the correlation function of a random field which is continuous and once
differentiable. This has been used recently by Kammann and Wand (2003).
As ν →∞ then ρM (·) tends to the gaussian correlation function.

The metric parameter λ is not estimated by ASReml ; it is usually set to 2
for Euclidean distance. Setting λ = 1 provides the cityblock metric, which
together with ν = 0.5 models a separable AR1×AR1 process. Cityblock met-
ric may be appropriate when the dominant spatial processes are aligned with
rows/columns as occurs in field experiments. Geometric anisotropy is discussed
in most geostatistical books (Webster and Oliver, 2001, Diggle et al., 2003) but
rarely are the anisotropy angle or ratio estimated from the data. Similarly the
smoothness parameter ν is often set a-priori (Kammann and Wand, 2003, Dig-
gle et al., 2003). However Stein (1999) and Haskard (2006) demonstrate that
ν can be reliably estimated even for modest sized data-sets, subject to caveats
regarding the sampling design.

The syntax for the Matérn class in ASReml is given by MATk where k is the
number of parameters to be specified; the remaining parameters take their
default values. Use the !G qualifier to control whether a specified parameter is
estimated or fixed. The order of the parameters in ASReml, with their defaults,
is (φ, ν = 0.5, δ = 1, α = 0, λ = 2). For example, if we wish to fit a Matérn
model with only φ estimated and the other parameters set at their defaults
then we use MAT1. MAT2 allows ν to be estimated or fixed at some other value
(for example MAT2 .2 1 !GPF). The parameters φ and ν are highly correlated
so it may be better to manually cover a grid of ν values.

We note that there is non-uniqueness in the anisotropy parameters of this
metric d(·) since inverting δ and adding π

2 to α gives the same distance. This
non-uniqueness can be removed by considering 0 ≤ α < π

2 and δ > 0, or by
considering 0 ≤ α < π and either 0 < δ ≤ 1 or δ ≥ 1. With λ = 2, isotropy
occurs when δ = 1, and then the rotation angle α is irrelevant: correlation
contours are circles, compared with ellipses in general. With λ = 1, correlation
contours are diamonds.

• power models rely on the definition of distance for the associated term, for
example,

– the distance between time points in a one-dimensional longitudinal analysis,
– the spatial distance between plot coordinates in a two-dimensional field trial

analysis.

Information for determining distances is supplied by the key argument on the
structure line.

– For one dimensional cases, key may be
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* the name of a data field containing the coordinate values when it relates
to an R structure

* 0 in which case a vector of coordinates of length order must be supplied
after all R and G structure lines.

* fac(x) when it relates to model term fac(x).

– In two directions (IEXP, IGAU, IEUC, AEXP, AGAU, MATn) the key argument
also depends on whether it relates to an R or G structure.
* For an R structure, use the form rrcc where rr is the number of a data field

containing the coordinates for the first dimension and cc is the number
of a data field containing the coordinates for the second direction. For
example, in the analysis of spatial data, if the x coordinate was in field 3
and the y coordinate was in field 4, the second argument would be 304.

* For a G structure relating to the model term fac(x,y), use fac(x,y).
For example
...
y ∼ mu ...!r fac(x,y) ...
...
fac(x,y) 1
fac(x,y) fac(x,y) IEUCV .7 1.3

• FAk, FACVk and XFAk are different parameterizations of the factor analytic
model in which Σ is modelled as Σ = ΓΓ′ + Ψ where Γ (ω×k) is a matrix of
loadings on the covariance scale and Ψ is a diagonal vector of specific variances.
See Smith et al. (2001) and Thompson et al. (2003) for examples of factor
analytic models in multi-environment trials. The general limitations are

– that Ψ may not include zeros except in the XFAk formulation
– constraints are required in Γ for k > 1 for identifiability. Typically, one zero

is placed in the second column, two zeros in the third column, etc.
– The total number of parameters fitted (kω+ω−k(k−1)/2) may not exceed

ω(ω + 1)/2.

• in FAk models the variance-covariance matrix Σ (ω×ω) is modelled on the cor-
relation scale as Σ = DCD, where

– D (ω×ω) is diagonal such that DD = diag (Σ) ,

– C (ω×ω) is a correlation matrix of the form FF ′ + E where F (ω×k) is a
matrix of loadings on the correlation scale and E is diagonal and is defined
by difference,

– the parameters are specified in the order loadings for each factor (F ) fol-
lowed by the variances (diag (Σ)); when k is greater than 1, constraints on
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the elements of F are required, see Table 7.5,

• FACVk models (CV for covariance) are an alternative formulation of FA models
in which Σ is modelled as Σ = ΓΓ′ + Ψ where Γ (ω×k) is a matrix of loadings
on the covariance scale and Ψ is diagonal. The parameters in FACV

– are specified in the order loadings (Γ) followed by variances (Ψ); when k is
greater than 1, constraints on the elements of Γ are required, see Table 7.5,

– are related to those in FA by Γ = DF and Ψ = DED,

• XFAk (X for extended) is the third form of the factor analytic model and hasdifficult

the same parameterisation as for FACV, that is, Σ = ΓΓ′ + Ψ. However, XFA
models

– have parameters specified in the order diag (Ψ) and vec(Γ); when k is greater
than 1, constraints on the elements of Γ are required, see Table 7.5,

– may not be used in R structures,
– are used in G structures in combination with the xfa(f,k) model term,
– return the factors as well as the effects.
– permit some elements of Ψ to be fixed to zero,
– are computationally faster than the FACV formulation for large problems

when k is much smaller than ω,

Special consideration is required when using the XFAk model. The SSP must
be expanded to have room to hold the k factors. This is achieved by using the
xfa(f,k) model term in place of f in the model. For example,
y ∼ site !r geno.xfa(site,2)
0 0 1
geno.xfa(site,2) 2
geno
xfa(site,2) 0 XFA2

• the OWN variance structure is a facility whereby users may specify their own vari-difficult

ance structure. This facility requires the user to supply a program MYOWNGDG
that reads the current set of parameters, forms the G matrix and a full set of
derivative matrices, and writes these to disk. Before each iteration, ASReml

writes the OWN parameters to a file, runs MYOWNGDG (which it presumes forms
the G and derivative matrix) and then reads the matrices back in. An example
of MYOWNGDG.f90 is distributed with ASReml. It duplicates the AR1 and AR2
structures. The following job fits an AR2 structure using this program.

Example of using the OWN structure
rep
blcol
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blrow
variety 25
yield
barley.asd !skip 1 !OWN MYOWN.EXE
y ∼ va
1 2
10 0 AR1 .1
15 0 OWN2 .2 .1 !TRR

The file written by ASReml has extension .own and looks like

15 2 1

0.6025860D+000.1164403D+00

This file was written by asreml for reading by your

program MYOWNGDG

asreml writes this file, runs your program and then reads

shfown.gdg

which it presumes has the following format:

The first lines should agree with the top of this file

specifying the order of the matrices ( 15)

the number of variance parameters ( 2)

and a control parameter you can specify ( 1).

These are written in (3I5) format. They are followed by

the list of variance parameters written in (6D13.7) format.

Follow this with 3 matrices written in (6D13.7) format.

These are to be each of 120 elements being lower triangle

row-wise of the G matrix and its derivatives with respect

to the parameters in turn.

This file contains details about what is expected in the file written by your
program. The filename used has the same basename as the job you are run-
ning with extension .own for the file written by ASReml and .gdg for the file
your program writes. The type of the parameters is set with the !T qualifier
described below. The control parameter is set using the !F qualifier.

– !F2 applies to OWN models. With OWN, the argument of !F is passed to the
MYOWNGDG program as an argument the program can access. This is the
mechanism that allows several OWN models to be fitted in a single run.

– !Ts is used to set the type of the parameters. It is primarily used in con-
junction with the OWN structure as ASReml knows the type in other cases.
The valid type codes are as follows:
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code description action if !GP is set

V variance forced positive
G variance ratio forced positive
R correlation −1 < r < 1
C covariance
P positive correlation 0 < r < 1
L loading

This coding also affects whether the parameter is scaled by σ2 in the output.

7.6 Variance structure qualifiers

Table 7.4 describes the R and G structure line qualifiers.

Table 7.4: List of R and G structure qualifiers

qualifier action

!=s used to constrain parameters within variance structures, see Section
7.9.

!GP, !GU, !GF,

!GZ

modify the updating of the variance parameters. The exact action of
these codes in setting bounds for parameters depends on the particular
model.

!GP (the default in most cases) attempts to keep the parameter in the
theoretical parameter space and is activated when the update of a
parameter would take it outside its space. For example, if an update
would make a variance negative, the negative value is replaced by
a small positive value. Under the !GP condition, repeated attempts
to make a variance negative are detected and the value is then fixed
at a small positive value. This is shown in the output in that the
parameter will have the code B rather than P appended to the value in
the variance component table.

!GU (unrestricted) does not limit the updates to the parameter. This
allows variance parameters to go negative and correlation parameters
to exceed ±1. Negative variance components may lead to problems; the
mixed model coefficient matrix may become non-positive definite. In
this case the sequence of REML log-likelihoods may be erratic and you
may need to experiment with starting values.

!GF fixes the parameter at its starting value

!GZ only applies to FA and FACV models and fixes the corresponding
parameter in to zero (0.00).
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List of R and G variance structure definition line qualifiers

qualifier action

For multiple parameters, the form !GXXXX can be used to specify F,

P, U or Z for the parameters individually. A shorthand notation allows
a repeat count before a code letter. Thus !GPPPPPPPPPPPPPPZPPPZP

could be written as !G14PZ3PZP.

For a US model, !GP makes ASReml attempt to keep the matrix posi-
tive definite. After each AI update, it extracts the eigenvalues of the
updated matrix. If any are negative or zero, the AI update is discarded
and an EM update is performed. Notice that the EM update is applied
to all of the variance parameters in the particular US model and cannot
be applied to only a subset of them.

!S2=r sets the initial value of the error variance within the section to r: the
!S2= qualifier may be used in R structure definitions to represent the
residual variance associated with the particular section. There is always
an error variance parameter associated with a section R structure. In
multiple section analyses the !S2= qualifier is used on the first of the c
lines for each section to set the initial error variance for that section. If
this is not supplied, ASReml calculates an initial value that is half the
simple variance of the data in the site. To fix the variance !S2==r is
used.

!S2==r is similar to !S2= except that the variance is fixed at r.

!S2==1 is used in the analysis of multiple section data and in multivariate
analyses and when variance parameters are included in the R structure.

7.7 Rules for combining variance models

As noted in Section 2.1 under Combining variance models, variance structures
are sometimes formed by combining variance models. For example, a two factor
interaction may involve two variance models, one for each of the two factors in
the interaction. Some of the rules for combining variance models differ for R
structures and G structures.
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NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl,

column.row

0 0 1

column.row 2

column 0 AR1 0.4

row 0 ARV1 0.3 0.1

A summary of the rules is as follows:

• when combining variance models in both R
and G structures, the resulting direct prod-
uct structure must match the ordered ef-
fects with the outer factor first, for example,
the G structure in the example opposite is
for column.row which tells ASReml that the
direct product structure matches the effects
ordered rows within columns. (The variance
model can be written as σ2(I +ΣC⊗λΣR).)
This is why the G structure definition line
for column is specified first,

• ASReml automatically includes and estimates an error variance parameter for
each section of an R structure. The variance structures defined by the user
should therefore normally be correlation matrices. A variance model can be
specified but the !S2==1 qualifier would then be required to fix the error vari-
ance at 1 and prevent ASReml trying to estimate two confounded parameters
(error variance and the parameter corresponding to the variance model speci-
fied, see 3a on page 111),

• ASReml does not have an implicit scale parameter for G structures that are
defined explicitly. For this reason the model supplied when the G structure
involves just one variance model must be a variance model; an initial valueSee Sections 2.1

and 7.5 must be supplied for this associated scale parameter; this is discussed under
additional initial values on page 119,

• when the G structure involves more than one variance model, one must be
either a homogeneous or a heterogeneous variance model and the rest should
be correlation models; if more than one are non-correlation models then the
!GF qualifier should be used to avoid identifiability problems, that is, ASReml

trying to estimate both parameters when they are confounded.

7.8 G structures involving more than one random term

The usual case is that a variance structure applies to a particular term in the
linear model and that there is no covariance between model terms. Sometimes it
is appropriate to include a covariance. Then, it is essential that the model terms
be listed together and that the variance structure defined for the first term be the
structure required for both terms. When the terms are of different size, the terms
must be linked together with the !{ and !} qualifiers (Table 6.1). While ASReml
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will check the overall size, it does not check that the order of effects matches the
structure definition so the user must be careful to get this right. Check that the
terms are conformable by considering the order of the fitted effects and ensuringCheck the order

the first term of the direct product corresponds to the outer factor in the nesting
of the effects. Two examples are

• random regressions where we want a covariance between intercept and slope
...
!r !{ animal animal.time !}
...
animal 2
2 0 US 3 -.5 2
animal

is equivalent (though not identical because of the scaling differences) to
...
!r pol(time,1).animal
...
pol(time,1).animal 2
pol(time,1) 0 US 1 -.1 .2
animal

• maternal/direct genetic covariance

lambid !P
sireid !P
damid !P
...
wwt ywt ∼ Trait Trait.sex !r !{ Trait.lambid at(Trait,2).damid !}
...
Trait.lambid 2
3 0 US
1.3 # Var(wwt D)
1.0 2.2 # Cov(wwt D,ywt D) Var(ywt D)
-.1 -.2 0.8 # Cov(wwt D,wwt M) Cov(ywt D,wwt M) Var(wwt M)
lambid 0 AINV # AINV explicitly requests to use A inverse
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7.9 Constraining variance parameters

Parameter equality within and between variance structures

Equality of parameters in a variance model can be specified using the !=s qualifierdifficult

where s is a string of letters and/or zeros (see Table 7.4). Positions in the string
correspond to the parameters of the variance model:

• all parameters with the same letter in the structure are treated as the same
parameter,

• 1-9 are different from a-z which are different from A-Z so that 61 equalities
can be specified. 0 and . mean unconstrained. A colon generates a sequence
viz. a:e is the same as abcde

• Putting % as the first characterin s makes the interpretation of codes absoluteNew

(so that they apply across structures).

• Putting * as the first characterin s indicates that numbers are repeat counts,New

A-Z are equality codes and only . is unconstrained. Thus !=*.3A2. is equiv-
alent to !=0AAA00 or !=0aaa00.

Examples are presented in Table 7.5.

Table 7.5: Examples of constraining variance parameters in ASReml

ASReml code action

!=ABACBA0CBA constrain all parameters corresponding
to A to be equal, similarly for B and C.
The 7th parameter would be left uncon-
strained. This sequence applied to an
unstructured 4 × 4 matrix would make
it banded, that is
A
B A
C B A
0 C B A

site.gen 2 # G header line

site 0 US .3 !=0A0AA0 !GPUPUUP

.1 .4 .1 .1 .3

gen

this example defines a structure for the
genotype by site interaction effects in a
MET in which the genotypes are inde-
pendent random effects within sites but
are correlated across sites with equal co-
variance.
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Examples of constraining variance parameters in ASReml

ASReml code action

site 0 FA2 !G4PZ3P4P !=00000000VVVV

4*.9 # initial values for 1st factor
0 3*.1 # initial values for 2nd factor

# first fixed at 0
4*.2 # init values for site variances

a 2 factor Factor Analytic model for 4
sites with equal variance is specified us-
ing this syntax. The first loading in the
second factor is constrained equal to 0
for identifiability. P places restrictions
on the magnitude of the loadings and
the variances to be positive.

xfa(site,2) 0 XFA2 !=VVVV0 !4P4PZ3P

4*.2 # initial specific variances
4*1.2 # initial loadings for 1st factor
0 3*.3 # initial loadings for 2nd factor

a 2 factor Factor analytic model in
which the specific variances are all
equal.

Constraints between and within variance models

More general relationships between variance parameters can be defined using thedifficult

!VCCc qualifier placed on the data file definition line.

• !VCC c specifies that there are c constraint lines defining constraints to be
applied,

• the constraint lines occur after the variance header line and any R and G
structure lines, that is, there must be a variance header line,

• each constraint is specified in a separate line in the form

P1 ∗ V1 P2 ∗ V2 ...

– Pi is the name of a random model term or the number of a parameter and
Vi is a coefficient,

– P1 is the primary parameter number,
– ∗ indicates that the next values (Vi) is a weighting coefficient,
– if the coefficient is 1 you may omit the * 1,
– if the coefficient is -1 you may write −Pi instead of Pi ∗ −1,
– the meaning of the coefficients is as follows P2 = V2 ∗ P1/V1 ,

– typically V1 = 1,

– a variance parameter may only be included in constraints once,
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• the Pi terms refer to positions in the full variance parameter vector. This may
change if the model is changed and is often difficult to determine as a number.
If it refers to a parameter which is a single traditional variance component
associated with a random term, the name of the random term may be given
instead of the parameter number. The full parameter vector includes a term
for each factor in the model and then a term for each parameter defined in the
R and G structures. A list of Pi numbers and their initial values is returned
in the .res file to help you to check the numbers. Alternatively, examine the
.asr file from an initial run with !VCC included but no arguments supplied.
The job will terminate but ASReml will provide the Pi values associated with
each variance component. Otherwise the numbers are given in the .res file.

The following are examples:

ASReml code action

5 7 * .1 parameter 7 is a tenth of parameter 5

5 -7 parameter 7 is the negative of parameter 5

32 34 35 37 38 39 for a (4× 4) US matrix given by parameters 31 . . . 40,
the covariances are forced to be equal.

units -uni(check) parameter associated with model term uni(check)

has the same magnitude but opposite sign to the pa-
rameter associated with model term units

7.10 Model building using the !CONTINUE qualifier

In complex models, the Average Information algorithm can have difficulty max-
imising the REML log-likelihood when starting values are not reasonably close
to the REML solution. ASReml has several internal strategies to cope with thisdifficult

problem but these are not always successful.

When the user needs to provide better starting values, one method is to fit a
simpler variance model. For example, it can be difficult to guess reasonable
starting values for an unstructured variance matrix. A first step might be to
assume independence and just estimate the variances. If all the variances are not
positive, there is little point proceeding to try and estimate the covariances.
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The !CONTINUE qualifier instructs ASReml to retrieve variance parameters from
the .rsv file if it exists rather than using the values in the .asr file. When reading
the .rsv file, it will take results from some matrices as supplying starting values
for other matrices. The transitions recognised are

DIAG to CORUH
DIAG to FA1
CORUH to FA1
FAi to FAi+1
FAi to CORGH
FAi to US
CORGH to US

The use of the .rsv file with !CONTINUE in this way reduces the need for the user
to type in the updated starting values.

The various models may be written in various !PART s of the job and controlled
by the !DOPART qualifier. When used with the -r qualifier on the command line
(see Chapter 12), the output from the various parts has the partnumber appended
to the filename. In this case it would be necessary to copy the .rsv files with the
new part number before running the next part to take advantage of this facility.
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8.1 Introduction

Multivariate analysis is used here in the narrow sense of a multivariate mixed
model. There are many other multivariate analysis techniques which are not
covered by ASReml. Multivariate analysis is used when we are interested in
estimating the correlations between distinct traits (for example, fleece weight
and fibre diameter in sheep) and for repeated measures of a single trait.

Repeated measures on rats

Wolfinger rat data

treat !A

wt0 wt1 wt2 wt3 wt4

rat.dat

wt0 wt1 wt2 wt3 wt4 ∼ Trait,

treat Trait.treat

1 2 0

27 0 ID #error variance

Trait 0 US

15 * 0

Wolfinger (1996) summarises a range of vari-
ance structures that can be fitted to repeated
measures data and demonstrates the models
using five weights taken weekly on 27 rats sub-
jected to 3 treatments. This command file
demonstrates a multivariate analysis of the
five repeated measures. Note that the two di-
mensional structure for common error meets
the requirement of independent units and is
correctly ordered traits with units.

Wether trial data

Orange Wether Trial 1984-8

SheepID !I

TRIAL

BloodLine !I

TEAM *

YEAR *

GFW YLD FDIAM

wether.dat !skip 1

GFW FDIAM ∼ Trait Trait.YEAR,

!r Trait.TEAM Trait.SheepID

1 2 2

1485 0 ID

Trait 0 US .2 .2 .4

Trait.TEAM 2

Trait 0 US

0.4

0.3 1.3

TEAM 0 ID

Trait.SheepID 2

Trait 0 US

0.2 0.2 2

SheepID 0 ID

predict YEAR Trait

Three key traits for the Australian wool in-
dustry are the weight of wool grown per year,
the cleanness and the diameter of that wool.
Much of the wool is produced from wethers
and most major producers have traditionally
used a particular strain or bloodline. To as-
sess the importance of bloodline differences,
many wether trials were conducted. One
trial was conducted from 1984 to 1988 at
Borenore near Orange. It involved 35 teams
of wethers representing 27 bloodlines. The
file wether.dat shown below contains greasy
fleece weight (kg), yield (percentage of clean
fleece weight to greasy fleece weight) and fibre
diameter (microns). The code (wether.as) to
the right performs a basic bivariate analysis of
this data.
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SheepID Site Bloodline Team Year GFW Yield FD

0101 3 21 1 1 5.6 74.3 18.5

0101 3 21 1 2 6.0 71.2 19.6

0101 3 21 1 3 8.0 75.7 21.5

0102 3 21 1 1 5.3 70.9 20.8

0102 3 21 1 2 5.7 66.1 20.9

0102 3 21 1 3 6.8 70.3 22.1

0103 3 21 1 1 5.0 80.7 18.9

0103 3 21 1 2 5.5 75.5 19.9

0103 3 21 1 3 7.0 76.6 21.9
...

4013 3 43 35 1 7.9 75.9 22.6

4013 3 43 35 2 7.8 70.3 23.9

4013 3 43 35 3 9.0 76.2 25.4

4014 3 43 35 1 8.3 66.5 22.2

4014 3 43 35 2 7.8 63.9 23.3

4014 3 43 35 3 9.9 69.8 25.5

4015 3 43 35 1 6.9 75.1 20.0

4015 3 43 35 2 7.6 71.2 20.3

4015 3 43 35 3 8.5 78.1 21.7

8.2 Model specification

The syntax for specifying a multivariate linear model in ASReml is

Y-variates ∼ fixed [!r random ] [!f sparse fixed ]

• Y-variates is a list of traits,

• fixed, random and sparse fixed are as in the univariate case (see Chapter 6) but
involve the special term Trait and interactions with Trait.

The design matrix for Trait has a level (column) for each trait.

– Trait by itself fits the mean for each variate,
– In an interaction Trait.Fac fits the factor Fac for each variate and
Trait.Cov fits the covariate Cov for each variate.

ASReml internally rearranges the data so that n data records containing t traits
each becomes n sets of t analysis records indexed by the internal factor Trait i.e.
nt analysis records ordered Trait within data record. If the data is already in
this long form, use the !ASMV t qualifier to indicate that a multivariate analysis
is required.
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8.3 Variance structures

Using the notation of Chapter 7, consider a multivariate analysis with t traits and
n units in which the data are ordered traits within units. An algebraic expression
for the variance matrix in this case is

In ⊗Σ

where Σ (t×t) is an unstructured variance matrix.

Specifying multivariate variance structures in ASReml

Orange Wether Trial 1984-8

SheepID !I

TRIAL

BloodLine !I

TEAM *

YEAR *

GFW YLD FDIAM

wether.dat !skip 1

GFW FDIAM ∼ Trait Trait.YEAR,

!r Trait.TEAM Trait.SheepID

1 2 2

1485 0 ID

Trait 0 US

3*0

Trait.TEAM 2

Trait 0 US

3*0

TEAM 0 ID

Trait.SheepID 2

Trait 0 US

3*0

SheepID 0 ID

predict YEAR Trait

A more sophisticated error structure is re-
quired for multivariate analysis. For a stan-
dard multivariate analysis

• the error structure for the residual must be
specified as two-dimensional with indepen-
dent records and an unstructured variance
matrix across traits; records may have ob-
servations missing in different patterns and
these are handled internally during analy-
sis,

• the R structure must be ordered traits
within units, that is, the R structure defini-
tion line for units must be specified before
the line for Trait,

• variance parameters are variances not vari-
ance ratios,

• the R structure definition line for units,
that is, 1485 0 ID, could be replaced by
0 or 0 0 ID; this tells ASReml to fill in the
number of units and is a useful option when the exact number of units in the
data is not known to the user,

• the error variance matrix is specified by the model Trait 0 US

– the initial values are for the lower triangle of the (symmetric) matrix speci-
fied row-wise,

– finding reasonable initial values can be a problem. If initial values are written
on the next line in the form q * 0 where q is t(t + 1)/2 and t is the number
of traits, ASReml will take half of the phenotypic variance matrix of the data
as an initial value, see .as file in code box for example,
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• the special qualifiers relating to multivariate analysis are !ASUV and !ASMV t,
see Table 5.4 for detail

– to use an error structure other than US for the residual stratum you must
also specify !ASUV (see Table 5.4) and include mv in the model if there are
missing values,

– to perform a multivariate analysis when the data have already been ex-
panded use !ASMV t (see Table 5.4)

– t is the number of traits that ASReml should expect,
– the data file must have t records for each multivariate record although
some may be coded missing.

8.4 The output for a multivariate analysis

Below is the output returned in the .asr file for this analysis.

ASReml 1.63o [01 Jun 2005] Orange Wether Trial 1984-88

Build: j [01 Jul 2005] 32 bit

13 Jul 2005 09:38:00.928 32.00 Mbyte Windows wether

Licensed to: Arthur Gilmour

***********************************************************

* SYNTAX change: A/B now means A A.B *

* *

* Contact support@asreml.co.uk for licensing and support *

***************************************************** ARG *

Folder: C:\data\asr\UG2\manex

TAG !I

BloodLine !I

QUALIFIERS: !SKIP 1

Reading wether.dat FREE FORMAT skipping 1 lines

Bivariate analysis of GFW and FDIAMtraits

Using 1485 records of 1485 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 TAG 521 0 0 1 261.0956 521

2 TRIAL 0 0 3.000 3.000 3.000

3 BloodLine 27 0 0 1 13.4323 27

4 TEAM 35 0 0 1 18.0067 35

5 YEAR 3 0 0 1 2.0391 3
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6 GFW Variate 0 0 4.100 7.478 11.20

7 YLD 0 0 60.30 75.11 88.60

8 FDIAM Variate 0 0 15.90 22.29 30.60

9 Trait 2

10 Trait.YEAR 6 9 Trait : 2 5 YEAR : 3

11 Trait.TEAM 70 9 Trait : 2 4 TEAM : 35

12 Trait.TAG 1042 9 Trait : 2 1 TAG : 521

1485 identity

2 UnStructure 0.2000 0.2000 0.4000

2970 records assumed sorted 2 within 1485

2 UnStructure 0.4000 0.3000 1.3000

35 identity

Structure for Trait.TEAM has 70 levels defined

2 UnStructure 0.2000 0.2000 2.0000

521 identity

Structure for Trait.TAG has 1042 levels defined

Forming 1120 equations: 8 dense.

Initial updates will be shrunk by factor 0.316

Notice: Algebraic ANOVA Denominator DF calculation is not available

Empirical derivatives will be used.

NOTICE: 2 singularities detected in design matrix.

1 LogL=-886.521 S2= 1.0000 2964 dfconvergence

2 LogL=-818.508 S2= 1.0000 2964 df

3 LogL=-755.911 S2= 1.0000 2964 df

4 LogL=-725.374 S2= 1.0000 2964 df

5 LogL=-723.475 S2= 1.0000 2964 df

6 LogL=-723.462 S2= 1.0000 2964 df

7 LogL=-723.462 S2= 1.0000 2964 df

8 LogL=-723.462 S2= 1.0000 2964 df

Source Model terms Gamma Component Comp/SE % C

Residual UnStru 1 1 0.198351 0.198351 21.94 0 Ufinal

Residual UnStru 2 1 0.128890 0.128890 12.40 0 Ucomponents

Residual UnStru 2 2 0.440601 0.440601 21.93 0 U

Trait.TEAM UnStru 1 1 0.374493 0.374493 3.89 0 U

Trait.TEAM UnStru 2 1 0.388740 0.388740 2.60 0 U

Trait.TEAM UnStru 2 2 1.36533 1.36533 3.74 0 U

Trait.TAG UnStru 1 1 0.257159 0.257159 12.09 0 U

Trait.TAG UnStru 2 1 0.219557 0.219557 5.55 0 U

Trait.TAG UnStru 2 2 1.92082 1.92082 14.35 0 U
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Covariance/Variance/Correlation Matrix UnStructuredResidual

0.4360 is the

correlation

Trait.TEAM

0.1984 0.4360

0.1289 0.4406

Covariance/Variance/Correlation Matrix UnStructured

0.3745 0.5436

0.3887 1.365

Covariance/Variance/Correlation Matrix UnStructuredTrait.TAG

0.2572 0.3124

0.2196 1.921

Analysis of Variance NumDF DenDF F_inc Prob

9 Trait 2 33.0 5761.58 <.001

10 Trait.YEAR 4 1162.2 1094.90 <.001

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using empirical derivatives.

Estimate Standard Error T-value T-prev

10 Trait.YEAR

2 -0.102262 0.290190E-01 -3.52

3 1.06636 0.290831E-01 36.67 42.07

5 1.17407 0.433905E-01 27.06

6 2.53439 0.434880E-01 58.28 32.85

9 Trait

1 7.13717 0.107933 66.13

2 21.0569 0.209095 100.71 78.16

11 Trait.TEAM 70 effects fitted

12 Trait.TAG 1042 effects fitted

SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1

1.00 1.54

10 possible outliers: see .res file

Finished: 13 Jul 2005 09:38:05.725 LogL Converged
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9.1 Introduction

In an ‘animal model’ or ‘sire model’ genetic analysis we have data on a set of
animals that are genetically linked via a pedigree. The genetic effects are there-
fore correlated and, assuming normal modes of inheritance, the correlation ex-
pected from additive genetic effects can be derived from the pedigree provided
all the genetic links are in the pedigree. The additive genetic relationship matrix
(sometimes called the numerator relationship matrix) can be calculated from the
pedigree. It is actually the inverse relationship matrix that is formed by ASReml

for analysis. Users new to this subject might find notes by Julius van der Werf
helpful:
http://www-personal.une.edu.au/~jvanderw/Mixed_Models_for_Genetic_analysis.pdf

For the more general situation where the pedigree based inverse relationship
matrix is not the appropriate/required matrix, the user can provide a particular
general inverse variance (GIV) matrix explicitly in a .giv file.

In this chapter we consider data presented in Harvey (1977) using the command
file harvey.as.

9.2 The command file

Pedigree file example

animal !P

sire !A

dam

lines 2

damage

adailygain

harvey.ped !ALPHA

harvey.dat

adailygain mu lines, !r

animal 0.25

In ASReml the !P data field qualifier indicates
that the corresponding data field has an asso-
ciated pedigree. The file containing the pedi-
gree (harvey.ped in the example) for animal
is specified after all field definitions and before
the datafile definition. See below for the first
20 lines of harvey.ped together with the cor-
responding lines of the data file harvey.dat.
All individuals appearing in the data file must
appear in the pedigree file. When all the pedi-
gree information (individual, male parent, female parent) appears as the first
three fields of the data file, the data file can double as the pedigree file. In
this example the line harvey.ped !ALPHA could be replaced with harvey.dat
!ALPHA. Typically additional individuals providing additional genetic links are
present in the pedigree file.
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9.3 The pedigree file

The pedigree file is used to define the genetic relationships for fitting a genetic
animal model and is required if the !P qualifier is associated with a data field.
The pedigree file

• has three fields; the identities of an individual, its sire and its dam (or maternal
grand sire if the !MGS qualifier, Table 9.1, is specified), in that order,

• is sorted so that the line giving the pedigree of an individual appears before
any line where that individual appears as a parent,

• is read free format; it may be the same file as the data file if the data file is
free format and has the necessary identities in the first three fields, see below,

• is specified on the line immediately preceding the data file line in the command
file,

• use identity 0 or * for unknown parents.

harvey.ped harvey.dat

101 SIRE 1 0

102 SIRE 1 0

103 SIRE 1 0

104 SIRE 1 0

105 SIRE 1 0

106 SIRE 1 0

107 SIRE 1 0

108 SIRE 1 0

109 SIRE 2 0

110 SIRE 2 0

111 SIRE 2 0

112 SIRE 2 0

113 SIRE 2 0

114 SIRE 2 0

115 SIRE 2 0

116 SIRE 2 0

117 SIRE 3 0

118 SIRE 3 0

119 SIRE 3 0

120 SIRE 3 0
...

101 SIRE 1 0 1 3 192 390 2241

102 SIRE 1 0 1 3 154 403 2651

103 SIRE 1 0 1 4 185 432 2411

104 SIRE 1 0 1 4 183 457 2251

105 SIRE 1 0 1 5 186 483 2581

106 SIRE 1 0 1 5 177 469 2671

107 SIRE 1 0 1 5 177 428 2711

108 SIRE 1 0 1 5 163 439 2471

109 SIRE 2 0 1 4 188 439 2292

110 SIRE 2 0 1 4 178 407 2262

111 SIRE 2 0 1 5 198 498 1972

112 SIRE 2 0 1 5 193 459 2142

113 SIRE 2 0 1 5 186 459 2442

114 SIRE 2 0 1 5 175 375 2522

115 SIRE 2 0 1 5 171 382 1722

116 SIRE 2 0 1 5 168 417 2752

117 SIRE 3 0 1 3 154 389 2383

118 SIRE 3 0 1 4 184 414 2463

119 SIRE 3 0 1 5 174 483 2293

120 SIRE 3 0 1 5 170 430 2303
...
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9.4 Reading in the pedigree file

The syntax for specifying a pedigree file in the ASReml command file is

pedigree file [qualifiers]

• the qualifiers1 are listed in Table 9.1,

• the identities (individual, male parent, female parent) are merged into a single
list and the inverse relationship is formed before the data file is read,

• when the data file is read, data fields with the !P qualifier are recoded according
to the combined identity list,

• the inverse relationship matrix is automatically associated with factors coded
from the pedigree file unless some other covariance structure is specified. The
inverse relationship matrix is specified with the variance model name AINV,

• the inverse relationship matrix is written to ainverse.bin,

– if ainverse.bin already exists ASReml assumes it was formed in a previous
run and has the correct inverse

– ainverse.bin is read, rather than the inverse being reformed (unless !MAKE
is specified); this saves time when performing repeated analyses based on a
particular pedigree,

– delete ainverse.bin or specify !MAKE if the pedigree is changed between
runs,

• identities are printed in the .sln file,

– identities should be whole numbers less than 200,000,000 unless !ALPHA is
specified,

– pedigree lines for parents must precede their progeny,
– unknown parents should be given the identity number 0,
– if an individual appearing as a parent does not appear in the first column, it

is assumed to have unknown parents, that is, parents with unknown parent-
age do not need their own line in the file,

– identities may appear as both male and female parents, for example, in
forestry.

1A white paper downloadable from http://www.vsni.co.uk/resources/doc/ contains de-
tails of these options.
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9.5 Genetic groups

If all individuals belong to one genetic group, then use 0 as the identity of the
parents of base individuals. However, if base individuals belong to various genetic
groups this is indicated by the !GROUP qualifier and the pedigree file must begin
by identifying these groups. All base individuals should have group identifiers as
parents. In this case the identity 0 will only appear on the group identity lines,
as in the following example where three sire lines are fitted as genetic groups.

Genetic group example

animal !P

sire 9 !A

dam

lines 2

damage

adailygain

harveyg.ped !ALPHA !MAKE !GROUP 3

harvey.dat

adailygain ∼ mu

!r animal 02.5 !GU

G1 0 0

G2 0 0

G3 0 0

SIRE 1 G1 G1

SIRE 2 G1 G1

SIRE 3 G1 G1

SIRE 4 G2 G2

SIRE 5 G2 G2

SIRE 6 G3 G3

SIRE 7 G3 G3

SIRE 8 G3 G3

SIRE 9 G3 G3

101 SIRE 1 G1

102 SIRE 1 G1

103 SIRE 1 G1
...

163 SIRE 9 G3

164 SIRE 9 G3

165 SIRE 9 G3

It is usually appropriate to allocate a genetic group identifier where the parentImportant

is unknown.

Table 9.1: List of pedigree file qualifiers

qualifier description

!ALPHA indicates that the identities are alphanumeric with up to 20 characters;
otherwise by default they are numeric whole numbers < 200,000,000.

!DIAG causes the pedigree identifiers, the diagonal elements of the Inverse of the
Relationship and the inbreeding coefficients for the individuals (calculated
as the diagonal of A− I) to be written to AINVERSE.DIA.

!GIV instructs ASReml to write out the A-inverse in the format of .giv files.
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List of pedigree file qualifiers

qualifier description

!GROUPS g includes genetic groups in the pedigree. The first g lines of the pedigree
identify genetic groups (with zero in both the sire and dam fields). All
other lines must specify one of the genetic groups as sire or dam if the
actual parent is unknown.

!INBRED

New
generates pedigree for inbred lines. Each cross is assumed to be selfed
several times to stabilize as an inbred line as is usual for cereals, before
being evaluated or crossed with another line. Since inbreeding is usually
associated with strong selection, it is not obvious that a pedigree assumption
of covariance of 0.5 between parent and offspring actually holds. Do not
use the !INBRED qualifier with the !MGS or !SELF qualifiers.

!MAKE tells ASReml to make the A-inverse (rather than trying to retrieve it from
the ainverse.bin file).

!MGS indicates that the third identity is the sire of the dam rather than the dam.

!REPEAT tells ASReml to ignore repeat occurrences of lines in the pedigree file.
Warning Use of this option will avoid the check that animals occur in
chronological order, but chronological order is still required.

!SELF s

New
allows partial selfing when third field is unknown. It indicates that progeny
from a cross where the second parent (male parent) is unknown, is assumed
to be from selfing with probability s and from outcrossing with probability
(1 − s). This is appropriate in some forestry tree breeding studies where
seed collected from a tree may have been pollinated by the mother tree or
pollinated by some other tree (Dutkowski and Gilmour, 2001). Do not use
the !SELF qualifier with the !INBRED or !MGS qualifiers.

!SKIP n allows you to skip n header lines at the top of the file.

!SORT

New
causes ASReml to sort the pedigree into an acceptable order, that is par-
ents before offspring, before forming the A-Inverse. The sorted pedigree is
written to a file whose name has .srt appended to its name.
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9.6 Reading a user defined inverse relationship matrix

Sometimes an inverse relationship matrix is required other than the one ASReml

can produce from the pedigree file. We call this a GIV (G inverse) matrix. The
user can prepare a .giv file containing this matrix and use it in the analysis.
Alternatively, the user can prepare the relationship matrix in a .grm file andNew

ASReml will invert it to form the GIV matrix. The syntax for specifying a G
matrix file (say name.grm) or the G inverse file (say name.giv) is

name.grm [!SKIP n ]
or
name.giv [!SKIP n ] 1 1 1

2 2 1

3 3 1

4 4 1

5 5 1.0666667

6 5 -0.2666667

6 6 1.0666667

7 7 1.0666667

8 7 -0.2666667

8 8 1.0666667

9 9 1.0666667

10 9 -0.2666667

10 10 1.0666667

11 11 1.0666667

12 11 -0.2666667

12 12 1.0666667

• the named file must have a .giv or .grm
extension,

• the G (inverse) files must be specified on
the line(s) immediately prior to the data file
line after any pedigree file,

• up to 98 G (inverse) matrices may be de-
fined,

• the file must be free format with three num-
bers per line, namely

row column value

defining the lower triangle row-wise of the
matrix,

• the file must be sorted column within row,

• every diagonal element must be represented; missing off-diagonal elements are
assumed to be zero cells,

• the file is used by associating it with a factor in the model. The number and
order of the rows must agree with the size and order of the associated factor,

• the !SKIP n qualifier tells ASReml to skip n header lines in the file.

The .giv file presented in the code box gives the following G inverse matrix



I4 0

0 I4 ⊗
[

1.067 −0.267
−0.267 1.067

]


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The .giv file can be associated with a factor in two ways:

• the first is to declare a G structure for the model term and to refer to the .giv
file with the corresponding identifier GIV1, GIV2, GIV3, · · ·, ; for example,

animal 1
animal 0 GIV1 0.12

for a one-dimensional structure put the scale pa-
rameter (0.12 in this case) after the GIVg identifier,

site.variety 2
site 0 CORUH 0.5
8*1.5
variety 0 GIV1

for a two-dimensional structure.

• the second is for one-dimensional structures; in this case the .giv structure
can be directly associated with the term using the giv(f,i) model function
which associates the ith .giv file with factor f, for example,

giv(animal,1) 0.12

is equivalent to the first of the preceding examples.

The example continued

Below is an extension of harvey.as to use harvey.giv which is partly shown to
the right. This G inverse matrix is an identity matrix of order 74 scaled by 0.5,
that is, 0.5I74 . This model is simply an example which is easy to verify. Note
that harvey.giv is specified on the line immediately preceding harvey.dat.

Model term specification associating the harvey.giv structure to the coding of
sire takes precedence over the relationship matrix structure implied by the !P
qualifier for sire. In this case, the !P is being used to amalgamate animals and
sires into a single list.

command file .giv file

GIV file example

animal !P

sire !P

dam

lines 2

damage

adailygain

harvey.ped !ALPHA

harvey.giv # giv structure file

harvey.dat

adailygain ∼ mu line, !r giv(sire,1) .25

01 01 .5

02 02 .5

03 03 .5

04 04 .5

05 05 .5

.

.

.

72 72 .5

73 73 .5

74 74 .5
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10.1 Introduction

This chapter describes the tabulate directive and the predict directive intro-
duced in Section 3.4 under Prediction.

Tabulation is the process of forming simple tables of averages and counts from
the data. Such tables are useful for looking at the structure of the data and
numbers of observations associated with factor combinations. Multiple tabulate
directives may be specified in a job.

Prediction is the process of forming a linear function of the vector of fixed and
random effects in the linear model to obtain an estimated or predicted value for a
quantity of interest. It is primarily used for predicting tables of adjusted means.
If a table is based on a subset of the explanatory variables then the other variables
need to be accounted for. It is usual to form a predicted value either at specified
values of the remaining variables, or averaging over them in some way.

10.2 Tabulation

A tabulate directive is provided to enable simple summaries of the data to be
formed for the purpose of checking the structure of the data. The summaries are
based on the same records as are used in the analysis of the model (i.e. leaving
out records eliminated from the analysis because of missing values in variates
and factors in the model). Multiple tabulate statements are permitted either
immediately before or after the linear model. If a linear (mixed) model is notNew

supplied, tabulation is based on all records.

The tabulate statement has the form

tabulate response variables [!WT weight !COUNT !DECIMALS [d] !SD !RANGE
!STATS !FILTER filter !SELECT value] ∼ factors

• tabulate is the directive name and must begin in column 1,

• response variables is a list of variates for which means are required,

• !WT weight nominates a variable containing weights,

• !COUNT requests counts as well as means to be reported,

• !DECIMALS [d] (1 ≤ d ≤ 7) requests means be reported with d decimal places. IfNew

omitted, ASReml reports 5 significant digits; if specified without an argument,
2 decimal places are reported,
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• !RANGE requests the minimum and maximum of each cell be reported,

• !SD requests the standard deviation within each cell be reported,

• !STATS is shorthand for !COUNT !SD !RANGE,New

• !FILTER filter nominates a factor for selecting a portion of the data,

• !SELECT value indicates that only records with value in the filter column are
to be included,

• ∼ factors identifies the factors to be used for classifying the data. Only factors
(not covariates) may be nominated and no more than six may be nominated.

ASReml prints the multiway table of means omitting empty cells to a file with
extension .tab.

10.3 Prediction

Underlying principles

Our approach to prediction is a generalization of that of Lane and Nelder (1982)
who consider fixed effects models. They form fitted values for all combinations
of the explanatory variables in the model, then take marginal means across the
explanatory variables not relevent to the current prediction. Our case is more
general in that random effects can be fitted in our (mixed) models. A full de-
scription can be found in Gilmour et al. (2004) and Welham et al. (2004).

Random factor terms may contribute to predictions in several ways. They may
be evaluated at values specified by the user, they may be averaged over, or they
may be omitted from the fitted values used to form the prediction. Averaging
over the set of random effects gives a prediction specific to the random effects
observed. We call this a ‘conditional’ prediction. Omitting the term from the
model produces a prediction at the population average (zero), that is, substituting
the assumed population mean for an unknown random effect. We call this a
‘marginal’ prediction. Note that in any prediction, some terms may be evaluated
as conditional and others at marginal values, depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural
interpretation for a prediction derived by omitting a fixed term from the fitted
values. Averages must therefore be taken over all the levels present to give a
sample specific average, or prediction must be at specified levels.
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For covariate terms (fixed or random) the associated effect represents the coef-
ficient of a linear trend in the data with respect to the covariate values. These
terms should be evaluated at a given value of the covariate, or averaged over sev-
eral given values. Omission of a covariate from the predictive model is equivalent
to predicting at a zero covariate value, which is often inappropriate.

Interaction terms constructed from factors generate an effect for each combination
of the factor levels, and behave like single factor terms in prediction. Interactions
constructed from covariates fit a linear trend for the product of the covariate
values and behave like a single covariate term. An interaction of a factor and a
covariate fits a linear trend for the covariate for each level of the factor. For both
fixed and random terms, a value for the covariate must be given, but the factor
may be evaluated at a given level, averaged over or (for random terms) omitted.

Before considering some examples in detail, it is useful to consider the conceptual
steps involved in the prediction process. Given the explanatory variables used to
define the linear (mixed) model, the four main steps are

(a) Choose the explanatory variable(s) and their respective value(s) for which
predictions are required; the variables involved will be referred to as the classify
set and together define the multiway table to be predicted.

(b) Determine which variables should be averaged over to form predictions. The
values to be averaged over must also be defined for each variable; the variables
involved will be referred to as the averaging set. The combination of the classify
set with these averaging variables defines a multiway hyper-table. Note that
variables evaluated at only one value, for example, a covariate at its mean value,
can be formally introduced as part of the classifying or averaging set.

(c) Determine which terms from the linear mixed model are to be used in forming
predictions for each cell in the multiway hyper-table in order to give appropriate
conditional or marginal prediction.

(d) Choose the weights to be used when averaging cells in the hyper-table to
produce the multiway table to be reported.

Note that after steps (a) and (b) there may be some explanatory variables in the
fitted model that do not classify the hyper-table. These variables occur in terms
that are ignored when forming the predicted values. It was concluded above that
fixed terms could not sensibly be ignored in forming predictions, so that variables
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should only be omitted from the hyper-table when they only appear in random
terms. Whether terms derived from these variables should be used when forming
predictions depends on the application and aim of prediction.

The main difference in this prediction process compared to that described by Lane
and Nelder (1982) is the choice of whether to include or exclude model terms when
forming predictions. In linear models, since all terms are fixed, terms not in the
classify set must be in the averaging set.

Predict syntax

NIN Alliance trial 1989

variety !A
...

column 11

nin89.asd !skip 1

yield ∼ mu variety !r repl

predict variety

0 0 1

repl 1

repl 0 IDV 0.1

The first step is to specify the classify set of
explanatory variables after the predict direc-
tive. The predict statement(s) may appear
immediately after the model line (before or af-
ter any tabulate statements) or after the R
and G structure lines. The syntax is

predict factors [qualifiers]

• predict must be the first element of the
predict statement, commencing in column 1 in upper or lower case,

• factors is a list of the variables defining a multiway table to be predicted; each
variable may be followed by a list of specific values to be predicted,

• the qualifiers, listed in Table 10.1, instruct ASReml to modify the predictions
in some way,

• a predict statement may be continued on subsequent lines by terminating the
current line with a comma,

• several predict statements may be specified.

ASReml parses the predict statement before fitting the model. If any syntax
problems are encountered, these are reported in the .pvs file after which the
statement is ignored: the job is completed as if the erroneous prediction statement
did not exist. The predictions are formed as an extra process in the final iteration
and are reported to the .pvs file. Consequently, aborting a run by creating the
ABORTASR.NOW file (see page 65) will cause any predict statements to be ignored.

By default, factors are predicted at each level, simple covariates are predicted
at their overall mean and covariates used as a basis for splines or orthogonal
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polynomials are predicted at their design points. Covariates grouped into a single
term (using !G qualifier page 49) are treated as covariates.

Model terms mv and units are always ignored.

Prediction at particular values of a covariate or particular levels of a factor is
achieved by listing the values after the variate/factor name. Where there is a
sequence of values, use the notation a b ... n to represent the sequence of values
from a to n with step size b − a. The default stepsize is 1 (in which case b may
be omitted). A colon (:) may replace the ellipsis (...). An increasing sequence
is assumed. When giving particular values for factors, the default is to use the
coded level (1:n) rather than the label (alphabetical or integer). To use the label,
precede it with a quote (").

The second step is to specify the averaging set. The default averaging set is
those explanatory variables involved in fixed effect model terms that are not in
the classifying set. By default variables that only define random model terms are
ignored. The qualifier !AVERAGE allows these variables to be added to the default
averaging set.

The third step is to select the linear model terms to use in prediction. The default
is that all model terms based entirely on variables in the classifying and averaging
sets are used. Two qualifiers allow this default to be modified by adding (!USE) or
removing (!IGNORE) model terms. The qualifier !ONLYUSE explicitly specifies the
model terms to use, ignoring all others. The qualifier !EXCEPT explicitly specifies
the model terms not to use, including all others. These qualifiers may implicitly
modify the averaging set by including variables defining terms in the predicted
model not in the classify set. It is sometimes easier to specify the classify set and
the model terms to use and allow ASReml to construct the averaging set.

The fourth step is to choose the weights to use when averaging over dimensions
in the hyper-table. The default is to simply average over the specified levels but
the qualifier !AVERAGE factor weights allows other weights to be specified.

For example,
yield ∼ site variety !r site.variety at(site).block
predict variety

puts variety in the classify set, site in the averaging set and block in the ig-
nore set. Consequently, ASReml forms the site×variety hyper-table from model
terms site, variety and site.variety but ignoring all terms in at(site).block,
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and then forms averages across sites to produce variety predictions.

There are often situations in which the fixed effects design matrix X is not of full
column rank. These can be classified according to the cause of aliasing.

1. linear dependencies among the model terms due to over-parameterisation of
the model,

2. no data present for some factor combinations so that the corresponding effects
cannot be estimated,

3. linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterisation chosen and can
be determined from the model. The second type of aliasing can be detected
when setting up the design matrix for parameter estimation (which may require
revision of imposed constraints). The third type can then be detected during
the absorption of the mixed model equations. Dependencies (aliasing) can be
dealt with in several ways and ASReml checks that predictions are of estimable
functions in the sense defined by Searle (1971, p160) and are invariant to the
constraint method used.

ASReml doesn’t print predictions of non-estimable functions unless the !PRINTALLprediction

problems qualifier is specified. However, using !PRINTALL is rarely a satisfactory solution.
Failure to report predicted values normally means that the predict statement is
averaging over some cells of the hyper-table that have no information and there-
fore cannot be averaged in a meaningful way. Appropriate use of the !AVERAGE
and/or !PRESENT qualifiers will usually resolve the problem. The !PRESENT qual-
ifier enables the construction of means by averaging only the estimable cells of the
hyper-table. It is reguarly used for nested factors, for example locations nested
in regions.

Table 10.1 is a list of the prediction qualifiers with the following syntax:

• f is an explanatory variable which is a factor,

• t is a list of terms in the fitted model,

• v is a list of explanatory variables.
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Table 10.1: List of prediction qualifiers

qualifier action

Controlling formation of tables

!AVERAGE f [weights] is used to formally include a variable in the averaging set and
to explicitly set the weights for averaging. Variables that only
appear in random model terms are not included in the averaging
set unless included with this qualifier. The default for weights
is equal weights. weights can be expressed like {3*1 0 2*1}/5
to represent the sequence 0.2 0.2 0.2 0 0.2 0.2. The string
inside the curly brace is expanded first and the expression n*v
means n occurrences of v. A separate !AVERAGE qualifier is re-
quired for each variable requiring explicit weights or to be added
to the default averaging set.

!PARALLEL [v] without arguments means all classify variables are expanded in
parallel. Otherwise list the variables from the classify set whose
levels are to be taken in parallel.

!PRESENT v

New
is used when averaging is to be based only on cells with data. v
is a list of variables and may include variables in the classify set.
v may not include variables with an explicit !AVERAGE qualifier.
The variable names in v may optionally be followed by a list of
levels for inclusion if such a list has not been supplied in the
specification of the classify set. ASReml works out what combi-
nations are present from the design matrix.

A second !PRESENT qualifier is allowed on a predict statement
(but not with !PRWTS). This is needed when there are two nested
factors such as sites within regions and genotype within family.
The two lists must not overlap.

!PRWTS v

New
is used in conjunction with the first !PRESENT factors to specify
the weights that ASReml will use for averaging that !PRESENT

table. More details are given below.

Controlling inclusion of model terms

!EXCEPT t causes the prediction to include all fitted model terms not in t.

!IGNORE t causes ASReml to set up a prediction model based on the default
rules and then removes the terms in t. This might be used to omit
the spline Lack of fit term (!IGNORE fac(x)) from predictions as
in

yield ∼ mu x variety !r spl(x) fac(x)

predict x !IGNORE fac(x)

which would predict points on the spline curve averaging over
variety.
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List of prediction qualifiers

qualifier action

!ONLYUSE t causes the prediction to include only model terms in t. It can be
used for example to form a table of slopes as in

HI ∼ mu X variety X.variety

predict variety X 1 !onlyuse X X.variety

!USE t causes ASReml to set up a prediction model based on the default
rules and then adds the terms listed in t.

Printing

!DEC [n]

New
gives the user control of the number of decimal places reported
in the table of predicted values where n is 0...9. The default is
4. G15.9 format is used if n exceeds 9.
When !VVP or !SED are used, the values are displayed with 6
significant digits unless n is specified and even; then the values
are displayed with 9 significant digits.

!PLOT [x]

New
instructs ASReml to attempt a plot of the predicted values. This
qualifier is only applicable in versions of ASReml linked with the
Winteracter Graphics library. If there is no argument, ASReml
produces a figure of the predicted values as best it can. The user
can modify the appearance by typing <Esc> to expose a menu
or with the plot arguments listed in Table 10.2.

!PRINTALL instructs ASReml to print the predicted value, even if it is not
of an estimable function. By default, ASReml only prints predic-
tions that are of estimable functions.

!SED requests all standard errors of difference be printed. Normally
only an average value is printed.

!TDIFF requests t-statistics be printed for all combinations of predicted
values.

!TURNINGPOINTS n
requests ASReml to scan the predicted values from a fitted line
for possible turning points and if found, report them and save
them internally in a vector which can be accessed by subsequent
parts of the same job using $TPn. This was added to facilitate
location of putative QTL.

!TWOSTAGEWEIGHTS

New
is intended for use with variety trials which will subsequently be
combined in a meta analysis. It forms the variance matrix for
the predictions, inverts it and writes the predicted variety means
with the corresponding diagonal elements of this matrix to the
.pvs file. These values are used in some variety testing programs
in Australia for a subsequent second stage analysis across many
trials. A data base is used to collect the results from the indi-
vidual trials and write out the combined data set. The diagonal
elements are used as weights in the combined analysis.
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List of prediction qualifiers

qualifier action

!VPV requests that the variance matrix of predicted values be printed
to the .pvs file.

PLOT graphic control qualifiers

This functionality was developed and this section was written by Damian Collins.

The !PLOT qualifier produces a graphic of the predictions. Where there is moreNew

than one prediction factor, a multi-panel ’trellis’ arrangement may be used. Al-
ternatively, one or more factors can be superimposed on the one panel. The data
can be added to the plot to assist informal examination of the model fit.

With no plot options, ASReml chooses an arrangement for plotting the predic-
tions by recognising any covariates and noting the size of factors. However, the
user is able to customize how the predictions are plotted by either using options
to the !PLOT qualifier or by using the graphical interface. The graphical interface
is accessed by typing Esc when the figure is displayed.

The !PLOT qualifier has the following options:

Table 10.2: List of predict plot options

option action

Lines and data

ˆaddData superimposes the raw data.

ˆaddlabels factors superimposes the raw data with the data points labelled using the
given factors (which must not be prediction factors). This option
may be useful to identify individual data points on the graph – for
instance, potential outliers – or alternatively, to identify groups
of data points (e.g. all data points in the same stratum).
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List of predict plot options

option action

ˆaddlines factors superimposes the raw data with the data points joined using the
given factors which must not be prediction factors. This option
may be useful for repeated measures data.

ˆnoSEs specifies that no error bars should be plotted (by default, they
are plotted)

ˆsemult r specifies the multiplier of the SE used for creating error bars
(default=1.0)

ˆjoinmeans specifies that the predicted values should be joined by lines (by
default, they are only joined if the x-axis variable is numeric)

Predictions involving two or more factors

If these arguments are used, all prediction factors (except for
those specified with only one prediction level) must be listed
once and only once, otherwise these arguments are ignored.

ˆxaxis factor specifies the prediction factor to be plotted on the x-axis

ˆsuperimpose factors specifies the prediction factors to be superimposed on the one
panel.

ˆcondition factors specifies the conditioning factors which define the panels. These
should be listed in the order that they will be used.

Layout

ˆgoto n specifies the page to start at, for multi-page predictions.

ˆsaveplot filename specifies the name of the file to save the plot to.

ˆlayout rows cols specifies the panel layout on each page

ˆbycols specifies that the panels be arranged by columns (default is by
rows)

ˆblankpanels n specifies that each page contains n blank panels. This sub-option
can only be used in combination with the layout sub-option.

ˆextrablanks n and
ˆextraspan p

specifies that an additional n blank panels be used every p pages
These can only be used with the layout sub-option.

Improving the graphical appearance (and readability)

ˆlabcharsize n specifies the relative size of the data points/labels (default=0.4)

ˆpanelcharsize n specifies the relative size of the labels used for the panels (de-
fault=1.0)

ˆvertxlab specifies that vertical annotation be used on the x-axis (default
is horizontal).
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List of predict plot options

option action

ˆabbrdlab n specifies that the labels used for the data be abbreviated to n
characters.

ˆabbrxlab n specifies that the labels used for the x-axis annotation be appre-
viated to n characters.

ˆabbrslab n specifies that the labels used for superimposed factors be abbre-
viated to n characters.

Complicated weighting

Generally, when forming a prediction table, it is necessary to average over (orNew

ignore) some potential dimensions of the prediction table. By default, ASReml

uses equal weights (1/f for a factor with f levels). More complicated weighting
is achieved by using the !AVERAGE qualifier to set specific (unequal) weights for
each level of a factor. However, sometimes the weights to be used need to be
defined with respect to two or more factors. The simplest case is when there are
missing cells and weighting is equal for those cells in a multiway table that are
present; achieved by using the !PRESENT qualifier. This is now further generalized
by allowing the user to fill in the weights for use by the !PRESENT machinery via
the !PRWTS qualifier.

The user specifies the factors in the table of weights with the !PRESENT statement
and then gives the table of weights using the !PRWTS qualifier. There may only be
one !PRESENT qualifier on the predict line when !PRWTS is specified. The order
of factors in the tables of weights must correspond to the order in the !PRESENT
list with later factors nested within preceding factors. Check the output to ensureCaution

that the values in the tables of weights are applied in the correct order. ASReml

may transpose the table of weights to match the order it needs for processing.

Consider a rather complicated example from a rotation experiment conducted
over several years. This particular analysis followed the analysis of the daily live
weight gain per hectare of the sheep grazing the plots. There were periods when
no sheep grazed. Different flocks grazed in the different years. Daily liveweight
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gain was assessed between 5 and 8 times in the various years. To obtain a measure
of total productivity in terms of sheep liveweight, we need to weight the daily
per sheep figures by the number of sheep grazing days per month. To obtain
treatment effects for each year, the experimenter used

predict year 1 crop 1 pasture lime !AVE month 56 55 56 53 57 63 6*0

predict year 2 crop 1 pasture lime !AVE month 36 0 0 53 23 24 54 54 43 35 0 0

predict year 3 crop 1 pasture lime !AVE month 70 0 21 17 0 0 0 70 0 0 53 0

predict year 4 crop 1 pasture lime !AVE month 53 56 22 92 19 44 0 0 36 0 0 49

predict year 5 crop 1 pasture lime !AVE month 0 22 0 53 70 22 0 51 16 51 0 0

but then wanted to average over years as well. Both of the following predict
statements produce the required values.

predict crop 1 pasture lime !PRES year month !PRWTS { 56 55 56 53 57 63 0 0 0,

0 0 0 36 0 0 53 23 24 54 54 43 35 0 0 70 0 21 17 0 0 0 70 0 0 53 0 53,

56 22 92 19 44 0 0 36 0 0 49 0 22 0 53 70 22 0 51 16 51 0 0}/5

predict crop 1 pasture lime !PRES month year !PRWTS { 56 36 70 53 0,

55 0 0 56 22 56 0 21 22 0 53 53 17 92 53 57 23 0 19 70 63 24 0 44 22,

0 54 0 0 0 0 54 70 0 51 0 43 0 36 16 0 35 0 0 51 0 0 53 5*0 49 0}/5

We have presented both sets of predict statements to show how the weights were
derived and presented. Notice that the order in !PRESENT year month implies
that the weight coefficients are presented in standard order with the levels for
months cycling within levels for years. There is a check which reports if non zero
weights are associated with cells that have no data. The weights are reported in
the .pvs file. !PRESENT counts are reported in the .res file.

Examples

Examples are as follows:

yield ∼ mu variety !r repl
predict variety

is used to predict variety means in the NIN field trial analysis. Random repl is
ignored in the prediction.

yield ∼ mu x variety !r repl
predict variety

predicts variety means at the average of x ignoring random repl.

yield ∼ mu x variety repl
predict variety x 2

forms the hyper-table based on variety and repl at the covariate value of 2 and



10 Tabulation of the data and prediction from the model 169

then averages across repl to produce variety predictions.

GFW Fdiam ∼ Trait Trait.Year !r Trait.Team
predict Trait Team

forms the hyper-table for each trait based on Year and Team with each linear
combination in each cell of the hyper-table for each trait using Team and Year
effects. Team predictions are produced by averaging over years.

yield ∼ variety !r site.variety
predict variety

will ignore the site.variety term in forming the predictions while

predict variety !AVERAGE site

forms the hyper-table based on site and variety with each linear combination
in each cell using variety and site.variety effects and then forms averages
across sites to produce variety predictions.

yield ∼ site variety !r site.variety at(site).block
predict variety

puts variety in the classify set, site in the averaging set and block in the ignore
set. Consequently, it forms the site×variety hyper-table from model terms
site, variety and site.variety but ignoring all terms in at(site).block,
and then forms averages across sites to produce variety predictions.
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11.1 Introduction

F phenvar 1 + 2 # pheno var

F genvar 1 * 4 # geno var

H herit 4 3 # heritability

ASReml includes a post-analysis procedure to
calculate functions of variance components.
Its intended use is when the variance compo-
nents are either simple variances or are vari-
ances and covariances in an unstructured matrix. The functions covered are linear
combinations of the variance components (for example, phenotypic variance), a
ratio of two components (for example, heritabilities) and the correlation based
on three components (for example, genetic correlation). The user must prepare
a .pin file. A simple sample .pin file is shown in the ASReml code box above.
The .pin file specifies the functions to be calculated. The user re-runs ASReml

with the -P command line option specifying the .pin file as the input file. AS-

Reml reads the model information from the .asr and .vvp files and calculates
the requested functions. These are reported in the .pvc file.

11.2 Syntax

Functions of the variance components are specified in the .pin file in lines of the
form
letter label coefficients

• letter ( either F, H or R ) must occur in column 1

– F is for linear combinations of variance components,
– H is for forming the ratio of two components,
– R is for forming the correlation based on three components,

• label names the result,

• coefficients is the list of coefficients for the linear function.

Linear combinations of components

F phenvar 1 + 2 # pheno var

F genvar 1 * 4 # geno var

H herit 4 3 # heritability

First ASReml extracts the variance compo-
nents from the .asr file and their variance
matrix from the .vvp file. Each linear func-
tion formed by an F line is added to the list of
components. Thus, the number of coefficients increases by one each line. We seek
to calculate k + c′v, cov (c′v, v) and var (c′v) where v is the vector of existing
variance components, c is the vector of coefficients for the linear function and
k is an optional offset which is usually omitted but would be 1 to represent the
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residual variance in a probit analysis and 3.289 to represent the residual variance
in a logit analysis. The general form of the directive is

F label a + b ∗ cb + c + d + m ∗ k

where a, b, c and d are subscripts to existing components va, vb, vc and vd and
cb is a multiplier for vb. m is a number bigger than the current length of v to flag
the special case of adding the offset k. Where matrices are to be combined the
form

F label a:b * k + c:d

can be used, as in the Coopworth data example, see page 300.

Assuming that the .pin file in the ASReml code box corresponds to a simple sire
model and that variance component 1 is the sire variance and variance component
2 is the residual variance, then

F phenvar 1 + 2

gives a third component which is the sum of the variance components, that is,
the phenotypic variance, and

F genvar 1 * 4

gives a fourth component which is the sire variance component multiplied by 4,
that is, the genotypic variance.

Heritability

F phenvar 1 + 2 # pheno var

F genvar 1 * 4 # geno var

H herit 4 3 # heritability

Heritabilities are requested by lines in the
.pin file beginning with an H. The specific
form of the directive in this case is

H label n d

This calculates σ2
n/σ2

d and se[σ2
n/σ2

d] where n and d are integers pointing to com-
ponents vn and vd that are to be used as the numerator and denominator respec-
tively in the heritability calculation.

Var(σ2
n

σ2
d
) = (σ2

n

σ2
d
)2(Var(σ2

n)
σ4

n
+ Var(σ2

d)

σ4
d
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σ2
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In the example

H herit 4 3

calculates the heritability by calculating component 4 (from second line of .pin)
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/ component 3 (from first line of .pin), that is, genetic variance / phenotypic
variance.

Correlation

F phenvar 1:3 + 4:6

R phencorr 7 8 9

R gencorr 4:6

Correlations are requested by lines in the .pin
file beginning with an R. The specific form of
the directive is

R label a ab b

This calculates the correlation r = σab/
√

σ2
aσ

2
b and the associated standard error.

a, b and ab are integers indicating the position of the components to be used.
Alternatively,

R label a:n

calculates the correlation r = σab/
√

σ2
aσ

2
b for all correlations in the lower tri-

angular row-wise matrix represented by components a to n and the associated
standard errors.

var (r) = r2[
var

(
σ2

a

)

4σ2
a
2 +

var
(
σ2

b

)

4σ2
b
2 +

var (σab)
σ2

ab

+
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(
σ2

a

)
σ2

b
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2
b

− 2cov
(
σ2

a

)
σab
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− 2cov (σab) σ2
b

2σabσ
2
b

]

In the example

R phencorr 7 8 9

calculates the phenotypic covariance by calculating
component 8 /

√
component 7 × component 9 where components 7, 8 and 9 are

created with the first line of the .pin file, and

R gencorr 4:6

calculates the genotypic covariance by calculating
component 5 /

√
component 4 × component 6 where components 4, 5 and 6 are

variance components from the analysis.
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A more detailed example

For convenience in preparing the .pin file, some users copy the variance compo-
nent lines from the .asr file and insert them at the top of the .pin file, being
careful to retain one leading space so that the lines will be just copied and oth-
erwise ignored as the .pin file is processed.

Bivariate sire model

sire !I

ywt fat

bsiremod.asd

ywt fat ∼ Trait !r Trait.sire

1 2 1

0 # ASReml will count units

Trait 0 US

3*0

Trait.sire 2

Trait 0 US

3*0

sire

The following sample .pin file is a little more
complicated. It relates to the bivariate sire
model in bsiremod.as shown in the code box
to the right.

The first six lines of the .pin file contain the
variance component table on which the .pin
file is based, copied from the the .asr file for
converience in coding the rest of the file.

Residual UnStruct 1 26.2197 26.2197 18.01 0 U

Residual UnStruct 1 2.85090 2.85090 9.55 0 U

Residual UnStruct 2 1.71556 1.71556 18.00 0 U

Tr.sire UnStruct 1 16.5262 16.5262 2.69 0 U

Tr.sire UnStruct 1 1.14422 1.14422 1.94 0 U

Tr.sire UnStruct 2 0.132847 0.132847 1.88 0 U

F phenvar 1:3 + 4:6

F addvar 4:6 * 4

H heritA 10 7

H heritB 12 9

R phencorr 7 8 9

R gencor 4:6

Numbering the parameters reported in bsiremod.asr (and
bsiremod.vvp)

1
2
3
4
5
6

error variance for ywt
error covariance for ywt and fat
error variance for fat
sire variance component for ywt
sire covariance for ywt and fat
sire variance for fat

then
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F phenvar 1:3 + 4:6

creates new components 7 = 1+4, 8 = 2+5 and 9 = 3+6,

F addvar 4:6 * 4

creates new components 10 = 4 × 4, 11 = 5 × 4 and 12 = 6 × 4,

H heritA 10 7

forms 10 / 7 to give the heritability for ywt,

H heritB 12 9

forms 12 / 9 to give the heritability for fat,

R phencorr 7 8 9

forms 8 /
√

7 × 9, that is, the phenotypic correlation between ywt and fat,

R gencorr 4:6

forms 5 /
√

4×6, that is, the genetic correlation between ywt and fat.

The result is:
7 phenvar 1 42.75 6.297.pvc file

8 phenvar 2 3.995 0.6761

9 phenvar 3 1.848 0.1183

10 addvar 4 66.10 24.58

11 addvar 5 4.577 2.354

12 addvar 6 0.5314 0.2831

h2ywt = addvar 10/phenvar 7= 1.5465 0.3574

h2fat = addvar 12/phenvar 9= 0.2875 0.1430

phencorr = phenvar /SQR[phenvar *phenvar ]= 0.4495 0.0483

gencor 2 1 = Tr.si 5/SQR[Tr.si 4*Tr.si 6]= 0.7722 0.1537
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12.1 Introduction

The command line, its options and arguments are discussed in this chapter. Com-
mand line options enable more workspace to be accessed to run the job, control
some graphics output and control advanced processing options. Command line
arguments are substituted into the job at run time.

As Windows likes to hide the command line, most command line options can be
set on an optional initial line of the .as file we call the top job control line to
distinguish it from the other job control lines discussed in Chapter 6. If the first
line of the .as file contains a qualifier other than !DOPATH, it is interpreted as
setting command line options and the Title is taken as the next line.

12.2 The command line

Normal run

The basic command to run ASReml is

[path]ASReml basename[.as[c]]

• path provides the path to the ASReml program (usually called asreml.exe in
a PC environment). In a UNIX environment, ASReml is usually run through a
shell script called ASReml.

– if the ASReml program is in the search path then path is not required and
the word ASReml will suffice; for example

ASReml nin89.as

will run the NIN analysis,
– if asreml.exe(ASReml) is not in the search path then path is required, for

example, if asreml.exe is in the usual place then

c:\Program Files\ASReml2\bin\Asreml nin89.as

will run nin89.as,

• ASReml invokes the ASReml program,

• basename is the name of the .as[c] command file.

The basic command line can be extended with options and arguments to

[path] ASReml [options] basename[.as[c]] [arguments]
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• options is a string preceded by a - (minus) sign. Its components control several
operations (batch, graphic, workspace, . . . ) at run time; for example, the
command line

ASReml -w128 rat.as

tells ASReml to run the job rat.as with workspace allocation of 128mb,

• arguments provide a mechanism (mostly for advanced users) to modify a job
at run time; for example, the command line

ASReml rat.as alpha beta

tells ASReml to process the job in rat.as as if it read alpha wherever $1 ap-
pears in the file rat.as, beta wherever $2 appears and 0 wherever $3 appears
(see below).

Processing a .pin file

If the filename argument is a .pin file, (see Chapter 11), then ASReml processes
it. If the pinfile basename differs from the basename of the output files it is
processing, then the basename of the output files must be specified with the P
option letter. Thus

ASReml border.pin

will perform the pinfile calculations defined in border.pin on the results in files
border.asr and border.vvp.

ASReml -Pborderwwt border.pin

will perform the pinfile calculations defined in border.pin on the results in files
borderwwt.asr and borderwwt.vvp.

Forming a job template from data file

The facility to generate a template .as file has been moved to the command line,
and extended. Normally, the name of a .as command file is specified on the
command line. If a .as file does not exist and a file with file extension .asd,New

.csv, .dat, .gsh, .txt or .xls is specified, ASReml assumes the data file has field
labels in the first row and generates a .as file template. First, it seeks to convert
the .gsh (Genstat) or .xls (Excel, see page 44) file to .csv format using the
ASRemload.dll utility provided by VSN. In generating the .as template, ASReml
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takes the first line of the .csv (or other) file as providing column headings, and
generates field definition lines from them. If some labels have ! appended, these
are defined as factors, otherwise ASReml attempts to identify factors from the
field contents. The template needs further editing before it is ready to run but
does have the field names copied across.

12.3 Command line options

Command line options and arguments may be specified on the command line or
on the top job control line. This is an optional first line of the .as file whichNew

sets command line options and arguments from within the job. If the first line of
the .as file contains a qualifier other than !DOPATH, it is interpreted as setting
command line options and the Title is taken as the next line.

The option string actually used by ASReml is the combination of what is on the
command line and what is on the job control line, with options set in both places
taking arguments from the command line. Arguments on the top job control line
are ignored if there are arguments on the command line. This section defines the
options. Arguments are discussed in detail in a following section.

Command line options are not case sensitive and are combined in a single string
preceded by a - (minus) sign, for example -LNW128

The options can be set on the command line or on the first line of the job either
as a concatenated string in the same format as for the command line, or as a list
of qualifiers. For example, the command line

ASReml -h22r jobname 1 2 3 could be replaced with
ASReml jobname if the first line of jobname.as was either
!-h22r 1 2 3 or
!HARDCOPY !EPS !RENAME !ARGS 1 2 3

Table 12.1 presents the command line options available in ASReml with brief
descriptions. It also specifies the equivalent qualifier name used on the top job
control line. Detailed descriptions follow.
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Table 12.1: Command line options

option qualifier type action

Frequently used command line options

C !CONTINUE job control continue iterations using previous esti-
mates as initial values

F !FINAL job control continue for one more iteration using
previous estimates as initial values

L !LOGFILE screen output copy screen output to basename.asl

N !NOGRAPHS graphics suppress interactive graphics

Ww !WORKSPACE w workspace set workspace size to w Mbyte

Other command line options

!ARGS a job control to set arguments (a) in job rather than
on command line

A !ASK job control prompt for options and arguments

Bb !BRIEF b output control reduce output to .asr file

D !DEBUG debug invoke debug mode

E !DEBUG 2 debug invoke extended debug mode

Gg !GRAPHICS g graphics set interactive graphics device

Hg !HARDCOPY g graphics set interactive graphics device,
graphics screens not displayed

I !INTERACTIVE graphics display graphics screen

J !JOIN output control concatenate !CYCLE output files

O !ONERUN job control override rerunning requested by
!RENAME

P NA post-processing calculation of functions of variance
components

Q !QUIET graphics suppress screen output

Rr !RENAME job control repeat run for each argument renaming
output filenames

Ss NA workspace set workspace size

Yv !YVAR v job control over-ride y-variate specified in the com-
mand file with variate number v

Z NA license reports current license details



12 Command file: Running the job 181

Prompt for arguments (A)

A (!ASK) makes it easier to specify command line options in Windows Explorer.
One of the options available when right clicking a .as file, invokes ASReml with
this option. ASReml then prompts for the options and arguments, allowing these
to be set interactively at run time. With !ASK on the top job control line, it is
assumed that no other qualifiers are set on the line. For example, a response of

-h22r 1 2 3 would be equivalent to
ASReml -h22r basename 1 2 3

Output control (B, J)

B[b] (!BRIEF [b) suppresses some of the information written to the .asr file. TheNew

data summary and regression coefficient estimates are suppressed by the options
B, B1 or B2. This option should not be used for initial runs of a job before you
have confirmed (by checking the data summary) that ASReml has read the data
as you intended. Use B2 to also have the predicted values written to the .asr file
instead of the .pvs file. Use B-1 to get BLUE estimates reported in .asr file.

J (!JOIN) is used in association with the !CYCLE qualifier to put the outputNew

from a set of runs into single files (see !CYCLE list !JOIN on page 186).

Debug command line options (D, E)

D and E (!DEBUG, !DEBUG 2) invoke debug mode and increase the information
written to the screen or .asl file. This information is not useful to most users.
On Unix systems, if ASReml is crashing use the system script command to
capture the screen output rather than using the L option, as the .asl file is not
properly closed after a crash.

Graphics command line options (G, H, I, N, Q)

Graphics are produced in the PC, Linux and SUN 32bit versions of ASReml using
the Winteracter graphics library.

The I (!INTERACTIVE) option permits the variogram and residual graphics to be
displayed. This is the default unless the L option is specified.

The N (!NOGRAPHICS) option prevents any graphics from being displayed. This
is also the default when the L option is specified.

The Gg (!GRAPHICS g) option sets the file type for hard copy versions of the
graphics. Hard copy is formed for all the graphics that are displayed.
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H[g] (!HARDCOPY g) replaces the G option when graphics are to be written to fileNew

but not displayed on the screen. The H may be followed by a format code e.g.
H22 for .eps.

Q (!QUIET) is used when running under the control of and editor such as ASReml-New

Wto suppress any POPUPs/ PAUSES from ASReml.

ASReml writes the graphics to files whose names are built up as
<basename>[<args>]<type>[<pass>][<section>].<ext> where square
parentheses indicate elements that might be omitted, <basename> is the name
portion of the .as file, <args> is any argument strings built into the output
names by use of the !RENAME qualifier, <type> indicates the contents of the figure
(as given in the following table), <pass> is inserted when the job is repeated
(!RENAME or !CYCLE) to ensure filenames are unique across repeats, <section> is
inserted to distinquish files produced from different sections of data (for example
from multisite spatial analysis) and <ext> indicates the file graphics format.

<type> file contents

R marginal means of residuals from spatial analysis of a section
V variogram of residuals from spatial analysis for a section
S residuals in field plan for a section
H histogram of residuals for a section
RvE residuals plotted against expected values
XYGi figure produced by !X, !Y and !G qualifiers
PV i Predicted values plotted for PREDICT directive i

The graphics file format is specified by following the G or H option by a number
g, or specifying the appropriate qualifier on the top job control line, as follows:

g qualifier description <ext>

1 !HPGL HP-GL pgl
2 !PS Postscript (default) ps
6 !BMP BMP bmp

10 !WPM Windows Print Manager
11 !WMF Windows Meta File wmf
12 !HPGL 2 HP-GL2 hgl
22 !EPS EncapsulatedPostScript eps
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Job control command line options (C, F, O, R)

C (!CONTINUE) indicates that the job is to continue iterating from the values in
the .rsv file. This is equivalent to setting !CONTINUE on the datafile line, see
Table 5.4 for details.

F (!FINAL) indicates that the job is to continue for one more iteration from the
values in the .rsv file. This is useful when using predict, see Chapter 10.

O (!ONERUN) is used with the R option to make ASReml perform a single analysisNew

when the R option would otherwise attempt multiple analyses. The R option then
builds some arguments into the output file name while other arguments are not.
For example

ASReml -nor2 mabphen 2 TWT out(621) out(929)
results in one run with output files mabphen2 TWT.*.

R[r] (!RENAME [r]) is used in conjunction with at least r argument(s) and doesNew

two things: it modifies the output filename to include the first r arguments so the
output is identified by these arguments, and, if there are more than r arguments,
the job is rerun moving the extra arguments up to position r (unless !ONERUN (O)
is also set). If r is not specified, it is taken as 1.

For example
ASReml -r2 job wwt gfw fd fat

is equivalent to running three jobs:
ASReml -r2 job wwt gfw → jobwwt gfw.asr
ASReml -r2 job wwt fd → jobwwt fd.asr
ASReml -r2 job wwt fat → jobwwt fat.asr

Yy (!YVAR y) overrides the value of response, the variate to be analysed (see
Section 6.2) with the value y, where y is the number of the data field containing
the trait to be analysed. This facilitates analysis of several traits under the same
model. The value of y is appended to the basename so that output files are not
overwritten when the next trait is analysed.

Workspace command line options (S, W)

The workspace requirements depend on problem size and may be quite large. An
initial workspace allocation may be requested on the command line with the S
or W options; if neither is specified, 32Mbyte (4 million double precision words)
is allocated.
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Wm (!WORKSPACE m) sets the initial size of the workspace in Mbytes. For exampleNew

W1600 requests 1600 Mbytes of workspace, the maximum typically available under
Windows. W2000 is the maximum available on 32bit Unix(Linux) systems. On
64bit systems, the argument, if less than 32, is taken as Gbyte.

Alternatively, Ss can be used to set the initial workspace allocation. s is a digit.
The workspace allocated is 2s× 8 Mbyte; S3 is 64Mb, S4 is 128Mb, S5 is 256Mb,
S6 is 512Mb, S7 is 1024Mb, S8 is 2048Mb, S9 is 4096Mb. This option was in
Release 1.0; the more flexible option, Wm, has been introduced in Release 2.0.
The W option is ignored if the S option is also specified.

Otherwise, additional workspace may be requested with the Ss or Wm options
or the !WORKSPACE m qualifier on the top job control line if not specified on
the control line. If your system cannot provide the requested workspace, the
request will be diminished until it can be satisfied. On multi-user systems, do
not unnecessarily request the maximum or other users may complain.

Having started with an initial allocation, if ASReml realises more space is required
as it is running, it will attempt to restart the job with increased workspace. If
the system has already allocated all available memory the job will stop.

Examples

ASReml code action

asreml -LW64 rat.as increase workspace to 64 Mbyte, send screen output to
rat.asl and suppress interactive graphics

asreml -IL rat.as send screen output to rat.asl but display interactive graph-
ics

asreml -N rat.as allow screen output but suppress interactive graphics

asreml -ILW512 rat.as increase workspace to 512 Mbyte , send screen output to
rat.asl but display interactive graphics

asreml -rs3 coop wwt ywt runs coop.as twice writing results to coopwwt.as and
coopywt.as using 64Mb workspace and substituting wwt and
ywt for $1 in the two runs.
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12.4 Advanced processing arguments

Standard use of arguments

Command line arguments are intended to facilitate the running of a sequence of
jobs that require small changes to the command file between runs. The output
file name is modified by the use of this feature if the -R option is specified. This
use is demonstrated in the Coopworth example of Section 15.10, see page 297.

Command line arguments are strings listed on the command line after basename,
the command file name, or specified on the top job control line after the !ARGS
qualifier. These strings are inserted into the command file at run time. When
the input routine finds a $n in the command file it substitutes the nth argument
(string). n may take the values 1. . .9 to indicate up to 9 strings after the command
file name. If the argument has 1 character, a trailing blank is attached to the
character and inserted into the command file. If no argument exists, a zero is
inserted. For example,

asreml rat.as alpha beta

tells ASReml to process the job in rat.as as if it read alpha wherever $1 appears
in the command file, beta wherever $2 appears and 0 wherever $3 appears.

Table 12.2: The use of arguments in ASReml

in command file on command line becomes in ASReml run

abc$1def no argument abc0 def

abc$1def with argument X abcX def

abc$1def with argument XY abcXYdef

abc$1def with argument XYZ abcXYZdef

abc$1 def with argument XX abcXX def

abc$1 def with argument XXX abcXXX def

abc$1 def

(multiple spaces)
with argument XXX abcXXX def
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Prompting for input

Another way to gain some interactive control of a job in the PC environment is
to insert !?{text} in the .as file where you want to specify the rest of the line at
run time. ASReml prompts with text and waits for a response which is used to
compete the line. The !? qualifier may be used anywhere in the job and the line
is modified from that point.

Unfortunately the prompt may not appear on the top screen under some windowsWarning
operating systems in which case it may not be obvious that ASReml is waiting
for a keyboard response.

Paths and Loops

ASReml is designed to analyse just one model per run. However, the analysis
of a data set typically requires many runs, fitting different models to different
traits. It is often convenient to have all these runs coded into a single .as file
and control the details from the command line (or top job control line) using
arguments. The highlevel qualifiers !CYCLE and DOPATH enable multiple analyses
to be defined and run in one execution of ASReml.

Table 12.3: High level qualifiers

qualifier action

!CYCLE list [!JOIN]

New
is a mechanism whereby ASReml can loop through a series
of jobs. The !CYCLE qualifier must appear on its own line,
starting in character 1. em list is a series of values which are
substituted into the job wherever the $I string appears. If
!JOIN is not specified, the current value from list is built into
the output filenames writing the output to separate files. If
!JOIN is specified, the outputs are written to a single file.
For example
!CYCLE 0.4 0.5 0.6 !JOIN

20 0 mat2 1.9 $I !GPF

would result in three runs and the results would be appended
to a single file.
Warning: The !CYCLE mechanism does not work in combina-
tion with the !RENAME qualifier used with multiple command
line arguments.
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High level qualifiers

qualifier action

!DOPATH n The qualifiers !DOPART and !PART have been extended in re-
lease 2.0 and !DOPATH and !PATH are thought to be more ap-
propriate names. Both spellings can be used interchangably.
!DOPATH allows several analyses to be coded and run sequen-
tially without having to edit the .as file between runs. Which
particular lines in the .as file are honoured is controlled by
the argument n of the !DOPATH qualifier in conjunction with
!PATH (or !PART) statements.

New

The argument (n) is often given as $1 indicating that the
actual path to use is specified as the first argument on the
command line (see Section 12.4). See Sections 15.7 and 15.10
for examples. The default value of n is 1.

!DOPATH n can be located anywhere in the job but if placed on
the top job control line, it cannot have the form !DOPATH $1

unless the arguments are on the command line as the !DOPATH
qualifier will be parsed before any job arguments on the same
line are parsed.

!PATH pathlist The !PATH (or !PART) control statement may list multiple
path numbers so that the following lines are honoured if any
one of the listed path numbers is active. The !PATH qualifier
must appear at the beginning of its own line after the !DOPATH
qualifier. A sequence of path numbers can be written using
a : b notation. For example

mydata.asd !DOPATH 4

!PATH 2 4 6:10

One situation where this might be useful is where it is neces-
sary to run simpler models to get reasonable starting values
for more complex variance models. The more complex mod-
els are specified in later parts and the !CONTINUE command
is used to pick up the previous estimates.
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13.1 Introduction

With each ASReml run a number of output files are produced. ASReml generates
the output files by appending various filename extensions to basename. A brief
description of the filename extensions is presented in Table 13.1.

Table 13.1: Summary of ASReml output files

file description

Key output files

.asr contains a summary of the data and analysis results.

.pvc contains the report produced with the P option.

.pvs contains predictions formed by the predict directive.

.res contains information from using the pol(), spl() and fac()

functions, the iteration sequence for the variance components
and some statistics derived from the residuals.

.rsv contains the final parameter values for reading back if the
!CONTINUE qualifier is invoked, see Table 5.4.

.sln contains the estimates of the fixed and random effects and their
corresponding standard errors.

.tab contains tables formed by the tabulate directive.

.yht contains the predicted values, residuals and diagonal elements
of the hat matrix for each data point.

Other output files

.apj is an ASReml project file created by ASReml-W.

.aov contains details of the ANOVA calculations.

.asl contains a progress log and error messages if the L command
line option is specified.

.asp contains transformed data, see !PRINT in Table 5.2.

.dbr/.dpr/.spr contains the data and residuals in a binary form for further
analysis (see !RESIDUALS, Table 5.5).

.veo holds the equation order to speed up re-running big jobs when
the model is unchanged. This binary file is of no use to the user.

.vrb contains the estimates of the fixed effects and their variance.

.vvp contains the approximate variances of the variance parameters.
It is designed to be read back with the P option for calculating
functions of the variance parameters.
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An ASReml run generates many files and the .sln and .yht files, in particular,
are often quite large and could fill up your disk space. You should therefore
regularly tidy your working directories, maybe just keeping the .as, .asr and
.pvs files.

13.2 An example

NIN Alliance Trial 1989

variety !A

id

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nin89a.asd !skip 1 !DISPLAY 15

yield ∼ mu variety !f mv

predict variety

1 2 0

row row AR1 0.5

column column AR1 0.5

In this chapter the ASReml output files are
discussed with reference to a two-dimensional
separable autoregressive spatial analysis of the
NIN field trial data, see model 3b on page 111
of Chapter 7 for details. The ASReml com-
mand file for this analysis is presented to the
right. Recall that this model specifies a sep-
arable autoregressive correlation structure for
residual or plot errors that is the direct prod-
uct of an autoregressive correlation matrix of
order 22 for rows and an autoregressive corre-
lation matrix of order 11 for columns. In this
case 0.5 is the starting correlation for both
columns and rows.

13.3 Key output files

The key ASReml output files are the .asr, .sln and .yht files.

The .asr file

This file contains

• a general announcements box (outlined in asterisks) containing current mes-
sages,

• a summary of the data to validate the specification of the model,

• a summary of the fitting process to check convergence,

• a summary of the variance parameters:

– The Gamma column reports the actual parameter fitted,
– the Component column reports the gamma converted to a variance scale if

appropriate,
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– Comp/SE is the ratio of the component relative to the square root of the
diagonal element of the inverse of the average information matrix Warning

Comp/SE should not be used for formal testing,
– The % shows the percentage change in the parameter at the last iteration,
– use the .pin file described Chapter 11 to calculate meaningful functions of

the variance components,

• an analysis of variance (ANOVA) table (Section 6.12). The table contains the
numerator degrees of freedom for the terms and ’incremental’ F-statistics for
approximate testing of effects. It may also contain denominator degrees of
freedon, a ’conditional’ F-statistic and a significance probability.

• estimated effects, their standard errors and t values for equations in the DENSE
portion of the SSP matrix are reported if !BRIEF -1 is invoked; the T-prev
column tests difference between successive coefficients in the same factor.

The following is a copy of nin89a.asr.

ASReml 1.63o [01 Jun 2005] NIN alliance trial 1989version & title
Build: j [01 Jul 2005] 128

14 Jul 2005 12:41:18.360 32.00 Mbyte Windows nin89adate, workspace
Licensed to: Arthur Gilmournotices
***********************************************************

* SYNTAX change: A/B now means A A.B *

* *

* Contact support@asreml.co.uk for licensing and support *

***************************************************** ARG *

Folder: C:\data\asr\UG2\manex

variety !A

QUALIFIERS: !SKIP 1 !DISPLAY 15

Reading nin89aug.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Using 242 records of 242 readdata summary
Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 26.4545 56

2 id 0 0 1.000 26.45 56.00

3 pid 18 0 1101. 2628. 4156.

4 raw 18 0 21.00 510.5 840.0

5 repl 4 0 0 1 2.4132 4

6 nloc 0 0 4.000 4.000 4.000

7 yield Variate 18 0 1.050 25.53 42.00

8 lat 0 0 4.300 25.80 47.30

9 long 0 0 1.200 13.80 26.40

10 row 22 0 0 1 11.5000 22

11 column 11 0 0 1 6.0000 11
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12 mu 1

13 mv_estimates 18

22 AR=AutoReg 0.5000

11 AR=AutoReg 0.5000

Forming 75 equations: 57 dense.

Initial updates will be shrunk by factor 0.316

NOTICE: 1 singularities detected in design matrix.

1 LogL=-401.827 S2= 42.467 168 df 1.000 0.5000 0.5000iterations
2 LogL=-400.780 S2= 43.301 168 df 1.000 0.5388 0.4876

3 LogL=-399.807 S2= 45.066 168 df 1.000 0.5895 0.4698

4 LogL=-399.353 S2= 47.745 168 df 1.000 0.6395 0.4489

5 LogL=-399.326 S2= 48.466 168 df 1.000 0.6514 0.4409

6 LogL=-399.324 S2= 48.649 168 df 1.000 0.6544 0.4384

7 LogL=-399.324 S2= 48.696 168 df 1.000 0.6552 0.4377

8 LogL=-399.324 S2= 48.708 168 df 1.000 0.6554 0.4375

Final parameter values 1.0000 0.65550 0.43748

Source Model terms Gamma Component Comp/SE % C

Variance 242 168 1.00000 48.7085 6.81 0 Pparameter
Residual AR=AutoR 22 0.655505 0.655505 11.63 0 Uestimates
Residual AR=AutoR 11 0.437483 0.437483 5.43 0 U

Analysis of Variance NumDF DenDF F_inc ProbANOVA
12 mu 1 25.0 331.85 <.001

1 variety 55 110.8 2.22 <.001

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

13 mv_estimates 18 effects fitted

6 possible outliers: in section 1 (see .res file)outliers!
Finished: 14 Jul 2005 12:41:26.862 LogL Converged

Finally we display a portion of Regression Screen output. The qualifier was
!SCREEN 3 !SMX 3.

Source Model terms Gamma Component Comp/SE % C

idsize 92 92 0.581102 0.136683 3.31 0 P

expt.idsize 828 828 0.121231 0.285153E-01 1.12 0 P

Variance 504 438 1.00000 0.235214 12.70 0 P

Analysis of Variance NumDF DenDF_con F_inc F_con M P_con

113 mu 1 72.4 65452.25 56223.68 . <.001

2 expt 6 37.5 5.27 0.64 A 0.695

4 type 4 63.8 22.95 3.01 A 0.024

114 expt.type 10 79.3 1.31 0.93 B 0.508

23 x20 1 55.1 4.33 2.37 B 0.130

24 x21 1 63.3 1.91 0.87 B 0.355

25 x23 1 68.3 23.93 0.11 B 0.745

26 x39 1 79.7 1.85 0.35 B 0.556

27 x48 1 69.9 1.58 2.08 B 0.154

28 x59 1 49.7 1.41 0.08 B 0.779
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29 x60 1 59.6 1.46 0.42 B 0.518

30 x61 1 64.0 1.11 0.04 B 0.838

31 x62 1 61.8 2.18 0.09 B 0.770

32 x64 1 55.6 31.48 4.50 B 0.038

33 x65 1 57.8 4.72 6.12 B 0.016

34 x66 1 58.5 1.13 0.03 B 0.872

35 x70 1 59.3 1.71 1.40 B 0.242

36 x71 1 64.4 0.08 0.01 B 0.929

37 x73 1 59.0 1.79 3.01 B 0.088

38 x75 1 59.9 0.04 0.26 B 0.613

39 x91 1 63.8 1.44 1.44 B 0.234

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using empirical derivatives.

129 mv_estimates 9 effects fitted

9 idsize 92 effects fitted ( 7 are zero)

115 expt.idsize 828 effects fitted ( 672 are zero)

127 at(expt,6).type.idsize.meth 9 effects fitted (+ 2199 singular)

128 at(expt,7).type.idsize.meth 10 effects fitted (+ 2198 singular)

LINE REGRESSION RESIDUAL ADJUSTED FACTORS INCLUDED

NO DF SUMSQUARES DF MEANSQU R-SQUARED R-SQUARED 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

1 3 0.1113D+02 452 0.2460 0.09098 0.08495 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

***** *****

2 3 0.1180D+02 452 0.2445 0.09648 0.09049 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

***** *****

3 3 0.1843D+01 452 0.2666 0.01507 0.00853 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 3 0.1095D+02 452 0.2464 0.08957 0.08353 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 3 0.1271D+02 452 0.2425 0.10390 0.09795 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

***** *****

6 3 0.9291D+01 452 0.2501 0.07594 0.06981 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0.9362D+01 452 0.2499 0.07652 0.07039 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

8 3 0.1357D+02 452 0.2406 0.11091 0.10501 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

***** *****

9 3 0.9404D+01 452 0.2498 0.07687 0.07074 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

10 3 0.1266D+02 452 0.2426 0.10350 0.09755 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

11 3 0.1261D+02 452 0.2427 0.10313 0.09717 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

12 3 0.9672D+01 452 0.2492 0.07906 0.07295 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

13 3 0.9579D+01 452 0.2494 0.07830 0.07218 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

14 3 0.9540D+01 452 0.2495 0.07797 0.07185 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

15 3 0.1089D+02 452 0.2465 0.08907 0.08302 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

16 3 0.2917D+01 452 0.2642 0.02384 0.01736 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

17 3 0.2248D+01 452 0.2657 0.01838 0.01187 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

18 3 0.1111D+02 452 0.2460 0.09088 0.08484 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

19 3 0.1746D+01 452 0.2668 0.01427 0.00773 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

20 3 0.1030D+02 452 0.2478 0.08423 0.07815 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

21 3 0.1279D+02 452 0.2423 0.10454 0.09860 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

22 3 0.8086D+01 452 0.2527 0.06609 0.05989 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

23 3 0.7437D+01 452 0.2542 0.06079 0.05456 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

24 3 0.1071D+02 452 0.2469 0.08755 0.08149 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

25 3 0.1370D+02 452 0.2403 0.11200 0.10611 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

***** *****

26 3 0.1511D+02 452 0.2372 0.12351 0.11770 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

***** *****

27 3 0.1353D+02 452 0.2407 0.11064 0.10473 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

...

680 3 0.1057D+02 452 0.2472 0.08641 0.08035 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The .sln file

The .sln file contains estimates of the fixed and random effects with their stan-
dard errors in an array with four columns ordered as
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factor name level estimate standard error

Note that the error presented for the estimate of a random effect is the square
root of the prediction error variance. In a genetic context for example where
a relationship matrix A is involved, the accuracy is

√
(1− s2

i

(1+fi)σ2
A
) where si is

the standard error reported with the BLUP (ui) for the ith individual, fi is the
inbreeding coefficient reported when !DIAG qualifier is given on a pedigree file
line, 1+fi is the diagonal element of A and σ2

A is the genetic variance. The .sln
file can easily be read into a GENSTAT spreadsheet or an S-PLUS data frame.
Below is a truncated copy of nin89a.sln. Note that

• the order of some terms may differ from the order in which those terms were
specified in the model statement,

• the missing value estimates appear at the end of the file in this example.

variety LANCER 0.000 0.000variety estimates

variety BRULE 2.987 2.842

variety REDLAND 4.707 2.978

variety CODY -0.3131 2.961

variety ARAPAHOE 2.954 2.727
...

variety NE87615 1.035 2.934

variety NE87619 5.939 2.850

variety NE87627 -4.376 2.998

mu 1 24.09 2.465intercept

mv_estimates 1 21.91 6.729missing value

mv_estimates 2 23.22 6.721estimates

mv_estimates 3 22.52 6.708

mv_estimates 4 23.49 6.676

mv_estimates 5 22.26 6.698

mv_estimates 6 24.47 6.707

mv_estimates 7 20.14 6.697

mv_estimates 8 25.01 6.691

mv_estimates 9 24.29 6.676

mv_estimates 10 26.30 6.658

mv_estimates 11 24.99 6.590

mv_estimates 12 27.78 6.492
...
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The .yht file

The .yht file contains the predicted values of the data in the original order (this
is not changed by supplying row/column order in spatial analyses), the residuals
and the diagonal elements of the hat matrix. Figure 13.1 shows the residuals
plotted against the fitted values (Yhat) and a line printer version of this figure is
written to the .res file. Where an observation is missing, the residual, missing
values predicted value and Hat value are also declared missing. The missing value
estimates with standard errors are reported in the .sln file.

NIN alliance trial 1989   Residuals vs Fitted values
 Residuals (Y)−24.87:15.91    Fitted values (X)    16.77:   35.94  

Figure 13.1 Residual versus Fitted values

This is the first 20 lines of nin89a.yht. Note that the values corresponding to
the missing data (first 15 records) are all -0.1000E-36 which is the internal value
used for missing values.

Record Yhat Residual Hat

1 -0.10000E-36 -0.1000E-36 -0.1000E-36

2 -0.10000E-36 -0.1000E-36 -0.1000E-36

3 -0.10000E-36 -0.1000E-36 -0.1000E-36

4 -0.10000E-36 -0.1000E-36 -0.1000E-36

5 -0.10000E-36 -0.1000E-36 -0.1000E-36

6 -0.10000E-36 -0.1000E-36 -0.1000E-36

7 -0.10000E-36 -0.1000E-36 -0.1000E-36

8 -0.10000E-36 -0.1000E-36 -0.1000E-36

9 -0.10000E-36 -0.1000E-36 -0.1000E-36

10 -0.10000E-36 -0.1000E-36 -0.1000E-36
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11 -0.10000E-36 -0.1000E-36 -0.1000E-36

12 -0.10000E-36 -0.1000E-36 -0.1000E-36

13 -0.10000E-36 -0.1000E-36 -0.1000E-36

14 -0.10000E-36 -0.1000E-36 -0.1000E-36

15 -0.10000E-36 -0.1000E-36 -0.1000E-36

16 24.088 5.162 6.074

17 27.074 4.476 6.222

18 28.795 6.255 6.282

19 23.775 6.325 6.235

20 27.042 6.008 5.962
...

240 24.695 1.855 6.114

241 25.452 0.1475 6.158

242 22.465 4.435 6.604

13.4 Other ASReml output files

The .aov file

This file reports details of the ANOVA calculations, particularly as relating to
the conditional F-statistics (not computed in this run). In the following table
relating to the incremental F-statistic, the columns are

• model term

• columns in design matrix

• numerator degrees of freedom

• simple F-statistic

• F-statistic scaled by λ

• λ as defined in Kenward & Roger.

• denominater degrees of freedom

mu 1 1 331.8483 331.8483 1.0000 25.0082

variety 56 55 2.2259 2.2259 0.9995 110.8419

A more useful example is obtained by adding a linear nitrogen contrast to the
oats example (Section 15.2).
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Split plot analysis - oat

blocks *

nitrogen !A

subplots

variety !A

wplots *

yield

oats.asd !skip 2

!CONTRAST linNitr nitrogen .6,

0.4 0.2 0.0

!FCON

yield ∼ mu variety linNitr,

nitrogen variety.linNitr,

v ariety.nitrogen,

!r blocks blocks.wplots

The basic design is six replicates of three
whole plots to which variety was randomised,
and four subplots which received 4 rates of
nitrogen. A !CONTRAST qualifier defines the
model term linNitr as the linear covariate
representing ntrogen applied. Fitting this be-
fore the model term nitrogen means that this
latter term represents lack of fit from a linear
response.

The !FCON qualifier requests conditional F-
statistics. As this is a small example, denom-
inator degrees of freedom are reported by de-
fault. An extract from the .asr file is followed
by the contents of the .aov file.

Degrees of Freedom and Stratum Variances

5.00 3175.06 12.0 4.0 1.0

10.00 601.331 0.0 4.0 1.0

45.00 177.083 0.0 0.0 1.0

Source Model terms Gamma Component Comp/SE % C

blocks 6 6 1.21116 214.477 1.27 0 P

blocks.wplots 18 18 0.598937 106.062 1.56 0 P

Variance 72 60 1.00000 177.083 4.74 0 P

Analysis of Variance NumDF DenDF_con F_inc F_con M P_con

8 mu 1 6.0 245.14 138.14 . <.001

4 variety 2 10.0 1.49 1.49 A 0.272

7 linNitr 1 45.0 110.32 110.32 a <.001

2 nitrogen 2 45.0 1.37 1.37 A 0.265

9 variety.linNitr 2 45.0 0.48 0.48 b 0.625

10 variety.nitrogen 4 45.0 0.22 0.22 B 0.928

The analysis shows that there is a significant linear response to nitrogen level but
the lack of fit term and the interactions with variety are not significant. In this
example, the conditional F-statistic is the same as the incremental one because
the contrast must appear before the lack-of-fit and the main effect before the
interaction and otherwise it is a balanced analysis.

The first part of the .aov file, the FMAP table only appears if the job is run
in DEBUG mode. There is a line for each model term showing the number
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of non-singular effects in the terms before the current term is absorbed. For
example, variety.nitrogen initially has 12 degrees of freedom (non-singular ef-
fects). mu takes 1, variety then takes 2, linNitr takes 1, nitrogen takes 2,
variety.linNitr takes 2 and there are four degrees of freedom left. This infor-
mation is used to make sure that the conditional F-statistic does not contradict
marginality principles.

The next table indicates the details of the conditional F-statistic. The conditional
F-statistic is based in the reduction in Sums of Squares from dropping the par-
ticular term (indicated by *) from the model also including the terms indicated
by I, C and c.

The next two tables, based on incremental and conditional sums of squares report
the model term, the number of effects in the term, the (numerator) degrees of
freedom, the F-statistic, an adjusted F-statistic multiplied by a scaling constant
reported in the next column and finally the computed denominator degrees of
freedom. The scaling constant is discussed by Kenward and Roger (1997).

Table showing the reduction in the numerator degrees of freedom

for each term as higher terms are absorbed.

Model Term 6 5 4 3 2 1

1 mu 12 3 4 1 3 1

2 variety 11 3 3 1 2

3 LinNitr 9 3 3 1

4 nitrogen 8 2 2

5 variety.LinNitr 6 2

6 variety.nitrogen 4

Marginality pattern for F-con calculation

-- Model terms --

Model Term DF 1 2 3 4 5 6

1 mu 1 * . C . C .

2 variety 2 I * C C . .

3 LinNitr 1 I I * . . .

4 nitrogen 2 I I I * . .

5 variety.LinNitr 2 I I I I * .

6 variety.nitrogen 4 I I I I I *

F-inc tests the additional variation explained when the term (*)

is added to a model consisting of the I terms.

F-con tests the additional variation explained when the term (*)

is added to a model consisting of the I and C/c terms.

The . terms are ignored for both F-inc and F-con tests.
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Incremental F statistics - calculation of Denominator degrees of freedom

Source Size NumDF F-value Lambda*F Lambda DenDF

mu 1 1 245.1409 245.1409 1.0000 5.0000

variety 3 2 1.4853 1.4853 1.0000 10.0000

LinNitr 1 1 110.3232 110.3232 1.0000 45.0000

nitrogen 4 2 1.3669 1.3669 1.0000 45.0000

variety.LinNitr 3 2 0.4753 0.4753 1.0000 45.0000

variety.nitrogen 12 4 0.2166 0.2166 1.0000 45.0000

Conditional F statistics - calculation of Denominator degrees of freedom

Source Size NumDF F-value Lambda*F Lambda DenDF

mu 1 1 327.5462 327.5462 1.0000 6.0475

variety 3 2 1.4853 1.4853 1.0000 10.0000

LinNitr 1 1 110.3232 110.3232 1.0000 45.0000

nitrogen 4 2 1.3669 1.3669 1.0000 45.0000

variety.LinNitr 3 2 0.4753 0.4753 1.0000 45.0000

variety.nitrogen 12 4 0.2166 0.2166 1.0000 45.0000

The .dpr file

The .dpr file contains the data and residuals from the analysis in double pre-
cision binary form. The file is produced when the !RES qualifier (Table 4.3) is
invoked. The file could be renamed with filename extension .dbl and used for
input to another run of ASReml. Alternatively, it could be used by another For-
tran program or package. Factors will have level codes if they were coded using
!A or !I. All the data from the run plus an extra column of residuals is in the
file. Records omitted from the analysis are omitted from the file.

The .pvc file

The .pvc file contains functions of the variance components produced by running
a .pin file on the results of an ASReml run as described in Chapter 11. The .pin
and .pvc files for a half-sib analysis of the Coopworth data are presented in
Section 15.10.

The .pvs file

The .pvs file contains the predicted values formed when a predict statement is
included in the job. Below is an edited version of nin89a.pvs. See Section 3.6
for the .pvs file for the simple RCB analysis of the NIN data considered in that
chapter.

nin alliance trial 14 Jul 2005 12:41:18title line

nin89a



13 Description of output files 200

Ecode is E for Estimable, * for Not Estimable

Warning: mv_estimates is ignored for prediction

---- ---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ---- ----

Predicted values of yield

variety Predicted_Value Standard_Error Ecode

LANCER 24.0894 2.4645 Epredicted variety

BRULE 27.0728 2.4944 Emeans

REDLAND 28.7954 2.5064 E

CODY 23.7728 2.4970 E

ARAPAHOE 27.0431 2.4417 E

NE83404 25.7197 2.4424 E

NE83406 25.3797 2.5028 E

NE83407 24.3982 2.6882 E

CENTURA 26.3532 2.4763 E

SCOUT66 29.1743 2.4361 E
...

NE87615 25.1238 2.4434 E

NE87619 30.0267 2.4666 E

NE87627 19.7126 2.4833 E

SED: Overall Standard Error of Difference 2.925SED summary

The .res file

The .res file contains miscellaneous supplementary information including

• a list of unique values of x formed by using the fac() model term,

• a list of unique (x, y) combinations formed by using the fac(x,y) model term,

• legandre polynomials produced by leg() model term,

• orthogonal polynomials produced by pol() model term,

• the design matrix formed for the spl() model term,

• predicted values of the curvature component of cubic smoothing splines,

• the empirical variance-covariance matrix based on the BLUPs when a Σ⊗I or
I ⊗Σ structure is used; this may be used to obtain starting values for another
run of ASReml,

• a table showing the variance components for each iteration,

• some statistics derived from the residuals from two-dimensional data (multi-
variate, repeated measures or spatial)
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– the residuals from a spatial analysis will have the units part added to
them (defined as the combined residual) unless the data records were sorted
(within ASReml ) in which case the units and the correlated residuals are
in different orders (data file order and field order respectively),

– the residuals are printed in the .yht file but the statistics in the .res file
are calculated from the combined residual,

– the Covariance/Variance/Correlation (C/V/C)matrix calculated directly
from the residuals; it contains the covariance below the diagonals, the vari-
ances on the diagonal and the correlations above the diagonal:
The ’FITTED’ matrix is the same as is reported in the .asr file and if
the Logl has converged is the one you would report; the ’BLUPS’ matrix is
clculated from the BLUPS and is provided so it can be used as starting values
when a simple initial model has been used and you are wanting to attempt
to fit a full unstructured matrix; the rescaled has the variance from the
FITTED and the covariance from the BLUPS and might we more suitable
as an initial matrix if the variances have been estimated. The FITTED and
RESCALEd matrices should not be reported.

– relevant portions of the estimated variance matrix for each term for which
an R structure or a G structure has been associated,

• a variogram and spatial correlations for spatial analysis; the spatial correlations
are based on distance between data points (see Gilmour et al., 1997),

• the slope of the log(absolute residual) on log(predicted value) for assessing pos-
sible mean-variance relationships and the location of large residuals. For ex-
ample,

SLOPES FOR LOG(ABS(RES)) ON LOG(PV) for section 1

0.99 2.01 4.34

produced from a trivariate analysis reports the slopes. A slope of b suggests
that y1−b might have less mean variance relationship. If there is no mean
variance relation, a slope of zero is expected. A slope of 1

2 suggests a SQRT
transformation might resolve the dependence; a slope of 1 means a LOG trans-
formation might be appropriate. So, for the 3 traits, log(y1), y−1

2 and y−3
3 are

indicated. This diagnostic strategy works better when based on grouped data
regressing log(standard deviation) on log(mean).

Also,

STND RES 16 -2.35 6.58 5.64

indicates that for the 16th data record, the residuals are -2.35, 6.58 and 5.64
times the respective standard deviations. The standard deviation used in this
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test is calculated directly from the residuals rather than from the analysis.
They are intended to flag the records with large residuals rather than to pre-
cisely quantify their relative size. They are not studentised residuals and are
generally not relevant when the user has fitted heterogeneous variances.

This is nin89a.res.

Convergence sequence of variance parameters

Iteration 1 2 3 4 5 6

LogL -401.827 -400.780 -399.807 -399.353 -399.326 -399.324

Change % 59 80 83 21 5 1

Adjusted 0 0 0 0 0 0

StepSz 0.316 0.562 1.000 1.000 1.000 1.000

5 0.500000 0.538787 0.589519 0.639457 0.651397 0.654445 0.5

6 0.500000 0.487564 0.469768 0.448895 0.440861 0.438406 -0.6

Plot of Residuals [-24.8730 15.9145] vs Fitted values [ 16.7724 35.9355] RvE

-----------------------------1------------------------------

| 1 |

| 1 |

| 1 1 1 |

1 3 11 112 1 1 21 1 1 1 |

1 211 24 1311 112 1 |

| 1 1 411 111122 12 |

| 1 1 1 4 1 13 1131111132 2 1 2 |

2 1 1 11 2 21221 11 1 2 1 |

| 1 2 1 21 2 1321 1 1 3 2 2 |

------------1-1-------1-11-1-421122---3---------------------

| 1 1 11 1 2 31111 12 1 |

2 1 1 1 11 |

| 1 12 |

| 1 1 1 |

1 1 1 1 |

| 11 1 |

| 21 1 11 |

| |

1 11 |

| 1 |

| 1 |

| 1 |

| 111 1 |

----------------------------1---1---1----1------------------

SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1

0.15

*

*

* ** ***

* ** *** *

** *** *** *** *

********** *****

******************

* * * * ** ******************

* ** ** ** ** ***** ** ************************ ** *

Min Mean Max -24.873 0.27954 15.915 omitting 18 zeros
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Spatial diagnostic statistics of Residuals 22 11

Residual Plot and Autocorrelations

<LOo- +xXH> [se 0.077]

| ++xxx+X|

|--- - O+ + x +x+x>+X |

|o - -- + +++xxx++X++|

|+ + + +x- +xxx+++|

| o -- ++ +- xx+xHxx|

|-+xxx+xXx +++x xX ++x|

|-++ o- +XxxXXx-xXX +++|

|ooL<Oo --++x x+xXx+x+H|

|<<<<<OO-- xX+ -x ++--|

|<O<<LLLoo - -o-+-+ +|

|L<<<<O-OL-o -++x x+ +|

1 0.28 0.38 0.50 0.65 0.77 1.00 0.77 0.65 0.50 0.38 0.28

2 0.17 0.27 0.39 0.51 0.56 0.64 0.56 0.50 0.40 0.32 0.26

3 0.05 0.11 0.19 0.28 0.35 0.42 0.40 0.35 0.30 0.24 0.19

Residuals [Percentage of sigma = 6.979 ]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 64 90 91 86 65 141

-72 -29 -52 -20 -61 11 -132 26 0 63 15 99 9 37 84 48 110 228 49 131 -20 9

-87 1 -32 -14 -26 -30 -3 37 -6 4 23 32 44 46 109 97 83 67 68 141 69 40

44 11 0 3 6 0 21 41 -15 51 25 32 120 -33 10 58 117 113 109 63 57 25

18 18 -2 -84 -19 -51 -45 18 30 56 -9 -12 53 -41 7 99 123 47 119 181 101 104

-40 29 87 103 81 61 81 130 94 10 55 53 55 106 15 109 153 23 0 50 66 111

-29 75 43 -24 -90 -37 -23 64 130 84 122 129 126 90 -38 91 133 126 -16 57 30 70

-99 -114 -218 -332 -174 -77 -19 -38 -29 58 63 88 4 124 49 101 129 113 45 92 70 198

-257 -333 -352 -319 -253 -166 -152 -52 -28 0 97 135 67 16 -9 -36 96 24 62 48 -27 -29

-227 -167 -356 -335 -183 -179 -189 -118 -124 14 -52 19 -7 -56 -81 -33 63 -40 57 -15 24 73

-183 -277 -352 -323 -288 -151 -56 -130 -188 -29 -78 7 12 -30 39 57 89 -3 116 27 2 64

| | | |

| | ’ | |

| , ,,, ’| , , , ’ | ,,,,,’, |

|----------------’---’-|---,-,-’,’,-,’-’--’-,,|-,-,--,’,,’’’’-------’|

| |,’’ ’ |, ’ ’’ |

| | ’ | |

| | | |

| | | |

| | , | |

| ’ ’’, | ,’ ’ ,,| ,,, ,’, , ,’ ,|

|’,,,,-,’,’’’--,’---’’’|,,,-,--,’’,,’-,--’----|-’---’---,’’’-,--’-’’-|

| ’ | , ’’ ’ |’ |

| | | |

| | | |

| | | |

| | ,| |

| , ’,’’’, ,’’ ,| , ’ ,’’ ,, | ,’, , |

|--’----’----------,’’-|------,--’’-,-’---’---|-------------,,--’’’--|

|’ ’,’’ ’ |, , ’’ | ’’ ’ ’’|

| | ’ , | ,’ |

| | ’* |,***, |

| | |

| | |

| ,| , ’ |
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|---------,-,,---’-’,’-|-----------,,-’’-,-’,’|

| ’ ’,’ ’ | ’ ’, ’ |

| , ,,,’’ |, ’ ’, |

|’ ** | ,**, |

Residual [section 1, column 8 ( 11), row 4 ( 22)] is -3.32 SD

Residual [section 1, column 9 ( 11), row 2 ( 22)] is -3.33 SD

Residual [section 1, column 9 ( 11), row 3 ( 22)] is -3.52 SD

Residual [section 1, column 10 ( 11), row 3 ( 22)] is -3.56 SD

Residual [section 1, column 10 ( 11), row 4 ( 22)] is -3.35 SD

Residual [section 1, column 11 ( 11), row 3 ( 22)] is -3.52 SD

6 possible outliers in section 1 : test value

23.0311757288330

Figures 13.2 to 13.5 show the graphics derived from the residuals when the
!DISPLAY 15 qualifier is specified and which are written to .eps files by run-
ning

ASReml -g22 nin89a.as

The graphs are a variogram of the residuals from the spatial analysis for site 1
(Figure 13.2), a plot of the residuals in field plan order (Figure 13.3), plots of
the marginal means of the residuals (Figure 13.4) and a histogram of the resid-
uals (Figure 13.5). The selection of which plots are displayed is controlled by
the !DISPLAY qualifier (Table 5.4). By default, the variogram and field plan are
displayed.

NIN alliance trial 1989      9a 1
    Variogram of residuals   14 Jul 2005 12:41:18

0  

 3.964625   

Outer displacement Inner displacement

Figure 13.2 Variogram of residuals
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The sample variogram is a plot of the semi-variances of differences of residuals at
particular distances. The (0,0) position is zero because the difference is identically
zero. ASReml displays the plot for distances 0, 1, 2, ..., 8, 9-10, 11-14, 15-20, . . . .

The plot of residuals in field plan order (Figure 13.3) contains in its top and right
margins a diamond showing the minimum, mean and maximum residual for that
row or column. Note that a gap identifies where the missing values occur.

The plot of marginal means of residuals shows residuals for each row/column as
well as the trend in their means.

NIN alliance trial 1989      9a 1
    Field plot of residuals   14 Jul 2005 12:41:18

Range:     −24.87     15.91

Figure 13.3 Plot of residuals in field plan order

The .rsv file

The .rsv file contains the variance parameters from the most recent iteration
of a model. The primary use of the .rsv file is to supply the values for the
!CONTINUE qualifier (see Table 5.4) and the C command line option (see Table
12.1). It contains sufficient information to match terms so that it can be used
when the variance model has been changed. This is nin89a.rsv.

76 6 1690 120

0.000000 0.000000 0.000000 1.000000 0.6555046 0.4374830

RSTRUCTURE 1 2

VARIANCE 1 1 0 1.00000

STRUCTURE 22 1 1 0.655505



NIN alliance trial 1989      9a 1Residuals V Row and Column position: 14 Jul 2005 12:41:18
Range:     −24.87     15.91

Figure 13.4 Plot of the marginal means of the residuals

NIN alliance trial 1989      vE_AHistogram of residuals14 Jul 2005 12:41:18

Range:     −24.87     15.91
Peak Count:       17

0

Figure 13.5 Histogram of residuals
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STRUCTURE 11 1 1 0.437483

The .tab file

The .tab file contains the simple variety means and cell frequencies. Below is an
edited version of nin89.tab.

nin alliance trial 10 Sep 2002 04:20:15

Simple tabulation of yield

variety

LANCER 28.56 4

BRULE 26.07 4

REDLAND 30.50 4

CODY 21.21 4

ARAPAHOE 29.44 4

NE83404 27.39 4

NE83406 24.28 4

NE83407 22.69 4

CENTURA 21.65 4

SCOUT66 27.52 4

COLT 27.00 4
...

NE87615 25.69 4

NE87619 31.26 4

NE87627 23.23 4

The .vrb file

The .vrb file contains the estimates of the effects together with their approxi-
mate prediction variance matrix corresponding to the dense portion. The file is
formatted for reading back for post processing. The number of equations in the
dense portion can be increased (to a maximum of 800) using the !DENSE option
(Table 5.5) but not to include random effects. The matrix is lower triangular
row-wise in the order that the parameters are printed in the .sln file. It can be
thought of as a partitioned lower triangular matrix,


 σ2 .

β̃
D

σ2C
DD



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where β̃
D

is the dense portion of β and C
DD

is the dense portion of C−1. This
is the first 20 rows of nin89a.vrb. Note that the first element is the estimated
error variance, that is, 48.6802, see the variance component estimates in the .asr
output.

0.486802E + 02 0.000000E + 00 0.000000E + 00 0.298660E + 01 0.000000E + 00

0.807551E + 01 0.470711E + 01 0.000000E + 00 0.456648E + 01 0.886687E + 01

−0.313123E + 00 0.000000E + 00 0.410031E + 01 0.476546E + 01 0.876708E + 01

0.295404E + 01 0.000000E + 00 0.343331E + 01 0.389620E + 01 0.416124E + 01

0.743616E + 01 0.163302E + 01 0.000000E + 00 0.377176E + 01 0.428109E + 01

0.472519E + 01 0.402696E + 01 0.837281E + 01 0.129013E + 01 0.000000E + 00

0.330076E + 01 0.347471E + 01 0.357605E + 01 0.316915E + 01 0.412130E + 01

0.768275E + 01 0.310018E + 00 0.000000E + 00 0.376637E + 01 0.419780E + 01

0.395693E + 01 0.383429E + 01 0.458492E + 01 0.378585E + 01 0.985202E + 01

0.226478E + 01 0.000000E + 00 0.379286E + 01 0.442457E + 01 0.439485E + 01

0.402503E + 01 0.440539E + 01 0.362391E + 01 0.502071E + 01 0.901191E + 01

0.508553E + 01 0.000000E + 00 0.393626E + 01 0.430512E + 01 0.423753E + 01

0.428826E + 01 0.417864E + 01 0.363341E + 01 0.444776E + 01 0.527289E + 01

0.855241E + 01 0.243687E + 01 0.000000E + 00 0.351386E + 01 0.369983E + 01

0.384055E + 01 0.330171E + 01 0.362019E + 01 0.352370E + 01 0.359516E + 01

0.392097E + 01 0.406762E + 01 0.801579E + 01 0.475935E + 01 0.000000E + 00

...

The first 5 rows of the lower triangular matrix in this case are



48.6802
0 0

2.98660 0 8.07551
4.70711 0 4.56648 8.86687

−0.313123 0 4.10031 4.76546 8.76708
...

...
...

...
...

. . .




The .vvp file

The .vvp file contains the inverse of the average information matrix on the com-
ponents scale. The file is formatted for reading back under the control of the
.pin file described in Chapter 11. The matrix is lower triangular row-wise in the
order the parameters are printed in the .asr file. This is nin89a.vvp with the
parameter estimates in the order error variance, spatial row correlation, spatial
column correlation.

Variance of Variance components 3

51.0852

0.217089 0.318058E-02

0.677748E-01 -0.201181E-02 0.649355E-02
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13.5 ASReml output objects and where to find them

Table 13.2 presents a list of objects produced with each ASReml run and where
to find them in the output files.

Table 13.2: ASReml output objects and where to find them

output object found in comment

analysis of variance
table

.asr file the analysis of variance table contains F-statistics
for each term in the fixed part of the model. These
provide for an incremental or optionally a condi-
tional test of significance (see Section 6.12).

data summary .asr file
.ass file

includes the number of records read and retained
for analysis, the minimum, mean, maximum,
number of zeros, number of missing values per
data field, factor/variate field distinction.

An extended report of the data is written to the
.ass file if the !SUM qualifier is specified. It in-
cludes cell counts for factors, histograms of vari-
ates and simple correlations among variates

eigen analysis .res file
.asl file

When ASReml reports a variance matrix to the
.asr file, it also reports an eigen analysis of the
matrix (eigen values and eigen vectors) to the
.res file.

elapsed time .asr file
.asl file

this can be determined by comparing the start
time with the finishing time.

The execution times for parts of the Iteration pro-
cess are written to the .asl file if the !DEBUG

!LOGFILE command line qualifiers are invoked.

fixed and random ef-
fects

.sln file if !BRIEF -1 is invoked, the effects that were in-
cluded in the dense portion of the solution are also
printed in the .asr file with their standard error,
a t-statistic for testing that effect and a t-statistic
for testing it against the preceding effect in that
factor.

heritability .pvc file placed in the .pvc file when postprocessing with
a .pin file

histogram of residu-
als

.res file and graphics file

intermediate results .asl file given if the -DL command line option is used.
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Table of output objects and where to find them ASReml

output object found in comment

mean/variance rela-
tionship

.res file for non-spatial analyses ASReml prints the slope
of the regression of log(abs(residual)) against
log(predicted value). This regression is ex-
pected to be near zero if the variance is inde-
pendent of the mean. A power of the mean data
transformation might be indicated otherwise. The
suggested power is approximately (1-b) where b is
the slope. A slope of 1 suggests a log transfor-
mation. This is indicative only and should not
be blindly applied. Weighted analysis or identi-
fying the cause of the heterogeneity should also
be considered. This statistic is not reliable in ge-
netic animal models or when units is included in
the linear model because then the predicted value
includes some of the residual.

observed variance/
covariance matrix
formed from BLUPs
and residuals

.res file for an interaction fitted as random effects, when
the first [outer] dimension is smaller than the in-
ner dimension less 10, ASReml prints an observed
variance matrix calculated from the BLUPs. The
observed correlations are printed in the upper tri-
angle. Since this matrix is not well scaled as an es-
timate of the underlying variance component ma-
trix, a rescaled version is also printed, scaled ac-
cording to the fitted variance parameters. The
primary purpose for this output is to provide rea-
sonable starting values for fitting more complex
variance structure. The correlations may also be
of interest. After a multivariate analysis, a sim-
ilar matrix is also provided, calculated from the
residuals.

phenotypic variance .pvc file placed in the .pvc file when postprocessing with
a .pin file

plot of residuals
against field position

graphics file

possible outliers .res file these are residuals that are more than 3.5 stan-
dard deviations in magnitude

predicted (fitted) val-
ues at the data points

.yht file these in the are printed in the second column

predicted values .pvs file given if a predict statement is supplied in the .as
file.

REML log-likelihood .asr file the REML log-likelihood is given for each iteration.
The REML log-likelihood should have converged
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Table of output objects and where to find them ASReml

output object found in comment

residuals .yht file and in binary form in .dpr file; these are printed in
column 3. Furthermore, for multivariate analyses
the residuals will be in data order (traits within
records). However, in a univariate analysis with
missing values that are not fitted, there will be
fewer residuals than data records - there will be
no residual where the data was missing so this can
make it difficult to line up the values unless you
can manipulate them in another program (spread-
sheet).

score .asl file given if the -DL command line option is used.

tables of means .tab file
.pvs file

simple averages of cross classified data are pro-
duced by the tabulate directive to the .tab file.
Adjusted means predicted from the fitted model
are written to the .pvs file by the predict direc-
tive.

variance of variance
parameters

.vvp file based on the inverse of the average information
matrix

variance parameters .asr file
.res file

the values at each iteration are printed in the
.res file. The final values are arranged in a table,
printed with labels and converted if necessary to
variances.

variogram graphics file
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14.1 Introduction

When ASReml finds an inconsistency it prints an error message to the screen (or
the .asl file) and dumps the current information to the .asr file. Below is the
screen output for a job that has been terminated due to an error. If a job has an
error you should

• try and identify the problem from the error message in the Fault: line and the
text of the Last line read: (this appears twice in the file to make it easier to
find),

• check that all labels have been defined and are in the correct case,

• some errors arise from conflicting information; the error may point to some-
thing that appears valid but is inconsistent with something earlier in the file,

• reduce to a simpler model and gradually build up to the desired analysis - this
should help to identify the exact location of the problem.

If the problem is not resolved from the above list, you may need to email Customer
Support at support@asreml.co.uk. Please send the .as file, (a sample of) the
data, the .asr file and the .asl file produced by running

asreml -dl basename.as

The -dl command line option invokes debug mode and sends all non-graphicsSee Chapter 12

screen output to the .asl file.

In this chapter we show some of the common typographical problems. Errors
arising from attempts to fit an inappropriate model are often harder to resolve.
Following is an example of output when the data file is not correctly named or is
not present (ASReml tries to interpret the filename as a variable name when the
file is not found).

ASReml 1.99a [01 Aug 2005] nin alliance trial

Build: c [26 Jul 2005] 32 bit

27 Jul 2005 15:41:25.267 64.00 Mbyte Windows ninerr1memory info

Licensed to: Arthur Gilmour

...

Folder: C:\data\ex\manexworking direc-

tory Warning: FIELD DEFINITION lines should be INDENTED

There is no file called nine.asd

Invalid label for data field: ’nine.asd’ contains a reserved character
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or may get confused with a previous label or reserved word

Fault 12 FORMAT error reading data structures

Last line read was: nine.asd !slip 1

Currently defined structures, COLS and LEVELS

1 variety 1 56 0 0 0 0

2 id 1 1 0 0 0 0

3 pid 1 1 0 0 0 0

4 raw 1 1 0 0 0 0

5 repl 1 4 0 0 0 0

6 nloc 1 1 0 0 0 0

7 yield 1 1 0 0 0 0

8 lat 1 1 0 0 0 0

9 long 1 1 0 0 0 0

10 row 1 22 0 0 0 0

11 column 1 11 0 0 0 0

12 nine.asd 0 0 0 0 0 0filename!

ninerr1 C:\data\ex\manex

12 factors defined [max 500].

0 variance parameters [max1500]. 2 special structures

Last line read was: nine.asd !slip 1last line read

12 12 -1 0 8000

Finished: 27 Jul 2005 15:41:26.379 FORMAT error reading data structuresfault message

14.2 Common problems

Common problems in coding ASReml are as follows:

• a variable name has been misspelt; variable names are case sensitive,

• a model term has been misspelt; model term functions and reserved words (mu,
Trait, mv, units) are case sensitive,

• the data file name is misspelt or the wrong path has been given - enclose the
pathname in quotes (’) if it includes embedded blanks,

• a qualifier has been misspelt or is in the wrong place,

• there is an inconsistency between the variance header line and the structure
definition lines presented,

• failure to use commas appropriately in model definition lines,

• there is an error in the R structure definition lines,
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• there is an error in the G structure definition lines,

– there is a factor name error,
– there is a missing parameter,
– there are too many/few initial values,

• there is an error in the predict statement,

• model term mv not included in the model when there are missing values in the
data and the model fitted assumes all data is present.

The most common problem in running ASReml is that a variable label is misspelt.

14.3 Things to check in the .asr file

The information that ASReml dumps in the .asr file when an error is encountered
is intended to give you some idea of the particular error:

• if there is no data summary ASReml has failed before or while reading the
model line,

• if ASReml has completed one iteration the problem is probably associated with
starting values of the variance parameters or the logic of the model rather than
the syntax per se.

Part of the file nin89.asr presented in Chapter 13 is displayed below to indicate
the lines of the .asr file that should be checked. You should check that

• sufficient workspace has been obtained,

• the records read/lines read/records used are correct,

• mean min max information is correct for each variable,

• the Loglikelihood has converged and the variance parameters are stable,

• ANOVA table has the expected degrees of freedom.

ASReml 1.63o [01 Jun 2005] NIN alliance trial 1989

Build: j [01 Jul 2005] 128

14 Jul 2005 12:41:18.360 32.00 Mbyte Windows nin89aworkspace

Licensed to: Arthur Gilmour

...

Folder: C:\data\asr\UG2\manexworking direc-

tory
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variety !A

QUALIFIERS: !SKIP 1 !DISPLAY 15

QUALIFIER: !DOPART 1 is active

Reading nin89aug.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Using 242 records of 242 readrecords read

Model term Size #miss #zero MinNon0 Mean MaxNon0data summary

1 variety 56 0 0 1 26.4545 56

2 id 0 0 1.000 26.45 56.00

3 pid 18 0 1101. 2628. 4156.

4 raw 18 0 21.00 510.5 840.0

5 repl 4 0 0 1 2.4132 4

6 nloc 0 0 4.000 4.000 4.000

7 yield Variate 18 0 1.050 25.53 42.00

8 lat 0 0 4.300 25.80 47.30

9 long 0 0 1.200 13.80 26.40

10 row 22 0 0 1 11.5000 22

11 column 11 0 0 1 6.0000 11

12 mu 1

13 mv_estimates 18

22 AR=AutoReg 0.5000

11 AR=AutoReg 0.5000

Forming 75 equations: 57 dense.

Initial updates will be shrunk by factor 0.316

NOTICE: 1 singularities detected in design matrix.

1 LogL=-401.827 S2= 42.467 168 df 1.000 0.5000 0.5000

2 LogL=-400.780 S2= 43.301 168 df 1.000 0.5388 0.4876

3 LogL=-399.807 S2= 45.066 168 df 1.000 0.5895 0.4698

4 LogL=-399.353 S2= 47.745 168 df 1.000 0.6395 0.4489

5 LogL=-399.326 S2= 48.466 168 df 1.000 0.6514 0.4409

6 LogL=-399.324 S2= 48.649 168 df 1.000 0.6544 0.4384

7 LogL=-399.324 S2= 48.696 168 df 1.000 0.6552 0.4377

8 LogL=-399.324 S2= 48.708 168 df 1.000 0.6554 0.4375check

convergence

Final parameter values 1.0000 0.65550 0.43748

Source Model terms Gamma Component Comp/SE % Cparameter

estimates Variance 242 168 1.00000 48.7085 6.81 0 P

Residual AR=AutoR 22 0.655505 0.655505 11.63 0 U
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Residual AR=AutoR 11 0.437483 0.437483 5.43 0 U

Analysis of Variance NumDF DenDF F_inc ProbANOVA

12 mu 1 25.0 331.85 <.001

1 variety 55 110.8 2.22 <.001

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

13 mv_estimates 18 effects fitted

6 possible outliers: in section 1 (see .res file)outliers?

Finished: 14 Jul 2005 12:41:26.862 LogL Converged

14.4 An example

nin alliance trial

variety 56 # 3.

id

pid

raw

repl 4

nloc

yield

lat

long

row 22

column 11

nine.asd !slip 1 !dopart $1

# 1. & 2.

!part 1

yield∼mu variety # 4.

!r Repl # 5.

0 0 1

Repl 1 # 6.

2 0 IDV 0.1 # 7.

!part 2

yield∼mu variety # 9.

1 2

11 row AR1 .1 #10.

22 col AR1 .1

!part

predict voriety # 8.

This is the command file for a simple RCBSee 2a in Sec-

tion 7.3 analysis of the NIN variety trial data in the
first part. However, this file contains eight
common mistakes in coding ASReml. We also
show two common mistakes associated with
spatial analyses in the second part. The errors
are highlighted and the numbers indicate the
order in which they are detected. Each error is
discussed with reference to the output written
to the .asr file. A summary of the errors is
as follows:

1. data file not found,

2. unrecognised qualifier,

3. incorrectly defined alphanumeric factor,

4. comma missing from first line of model,

5. misspelt variable label in linear model,

6. misspelt variable label in G structure
header line,

7. wrong levels declared in G structure model
line,
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8. misspelt variable label in predict statement.

9. mv omitted from spatial model

10. wrong levels declared in R structure model
lines

1. Data file not found

nin alliance trial
...

nine.asd !slip 1

yield ∼ mu variety
...

Running this job produces the .asr file in Sec-
tion 14.1. The first problem is that ASReml

cannot find the data file nine.asd as indi-
cated in the error message above the Fault
line. ASReml reports the last line read before
the job was terminated, an error message
FORMAT error reading data structures
and other information obtained to that point. In this case the program only made
it to the data file definition line in the command file. Since nine.asd commences
in column 1, ASReml checks for a file of this name (in the working directory since
no path is supplied). Since ASReml did not find the data file it tried to interpret
the line as a variable definition but . is not permitted in a variable label. The
problem is either that the filename is misspelt or a pathname is required. In this
case the data file was given as nine.asd rather than nin.asd.

2. An unrecognised qualifier and 3. An incorrectly defined factor

After supplying the correct pathname and re-running the job, ASReml produces
the warning message

WARNING: Unrecognised qualifier at character 9 !slip 1

followed by the fault message

ERROR Reading the data.
The warning does not cause the job to terminate immediately but arises because
!slip is not a recognised data file line qualifier; the correct qualifier is !skip.
The job terminates when reading the header line of the nin.asd file which is
alphabetic when it is expecting numeric values. The following output displays
the error message produced.

ASReml 1.99a [01 Aug 2005] nin alliance trial

Build: c [26 Jul 2005] 32 bit

27 Jul 2005 15:41:38.987 64.00 Mbyte Windows ninerr2
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Licensed to: Arthur Gilmour

...

Folder: C:\data\ex\manex

QUALIFIERS: !SLIP 1

Warning: Unrecognised qualifier at character 9 !SLIP 1

QUALIFIER: !DOPART 1 is active

Reading nin.asd FREE FORMAT skipping 0 lines

Univariate analysis of yield

Error at field 1 [variety] of record 1 [line 1]error

Since this is the first data record, you may need to skip some header lineshint

(see !SKIP) or append the !A qualifier to the definition of factor variety

Fault 0 Missing/faulty !SKIP or !A needed for variety

Last line read was: variety id pid raw rep nloc yield lat long row columngive away

Currently defined structures, COLS and LEVELS

1 variety 1 56 56 0 0 0

2 id 1 1 1 0 1 0

3 pid 1 1 1 0 2 0

4 raw 1 1 1 0 3 0

5 repl 1 4 4 0 4 0

6 nloc 1 1 1 0 5 0

7 yield 1 1 1 0 6 0

8 lat 1 1 1 0 7 0

9 long 1 1 1 0 8 0

10 row 1 22 22 0 9 0

11 column 1 11 11 0 10 0

12 mu 0 1 -8 0 -1 0

ninerr2 nin.asd

Model specification: TERM LEVELS GAMMAS

mu 0

variety 0

12 factors defined [max 500].

0 variance parameters [max1500]. 2 special structures

Last line read was: variety id pid raw rep nloc yield lat long row column

12 0 0 0 8000

Finished: 27 Jul 2005 15:41:40.068 Missing/faulty !SKIP or !A needed for variety

Fixing the error by changing !slip to !skip however still produces the fault
message
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Missing/faulty !SKIP or !A needed for variety.

The portion of output given below shows that ASReml has baulked at the name
LANCER in the first field on the first data line. This alphabetic data field is not
declared as alphabetic. The correct data field definition for variety is

variety !A

to indicate that variety is a character field.

Folder: C:\asr\ex\manex

QUALIFIERS: !SKIP 1

Reading nin89.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Field 1 [LANCER] of record 1 [line 1] is not valid.

Since this is the first data record, you may need to skip some header lineshint

(see !SKIP) or append the !A qualifier to the definition of factor variety

Fault 0 Missing/faulty !SKIP or !A needed for variety

Last line read was: LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1

:

ninerr3 variety id pid raw rep nloc yield lat

Model specification: TERM LEVELS GAMMAS

mu 0 0.000

variety 0 0.000

12 factors defined [max 500].

0 variance parameters [max 900]. 2 special structures

Last line read was: LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1

12 0 0 0 8000

Finished: 28 Jul 2005 09:51:12.817 Missing/faulty !SKIP or !A needed for variety

4. A missing comma and 5. A misspelt factor name in linear model

nin alliance trial

variety !A
...

repl 4
...

nin89.asd !skip 1

yield ∼ mu variety

!r Repl
...

The model has been written over two lines but
ASReml does not realise this because the first
line does not end with a comma. The missing
comma causes the fault

R header SECTIONS DIMNS GSTRUCT

as ASReml tries to interpret the second line of
the model (see Last line read) as the vari-
ance header line. The .asr file is displayed
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below. Note that the data has now been suc-
cessfully read as indicated by the data summary. You should always check the
data summary to ensure that the correct number of records have been detected
and the data values match the names appropriately.

ASReml 1.99a [01 Aug 2005] nin alliance trial

Build: d [27 Jul 2005] 32 bit

28 Jul 2005 09:53:15.553 64.00 Mbyte Windows ninerr4

Licensed to: Arthur Gilmour

Folder: C:\data\ex\manex

variety !A

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 1 is active

Reading nin.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Using 224 records of 242 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 28.5000 56

2 id 0 0 1.000 28.50 56.00

3 pid 0 0 1101. 2628. 4156.

4 raw 0 0 21.00 510.5 840.0

5 repl 4 0 0 1 2.5000 4

6 nloc 0 0 4.000 4.000 4.000

7 yield Variate 0 0 1.050 25.53 42.00

8 lat 0 0 4.300 27.22 47.30

9 long 0 0 1.200 14.08 26.40

10 row 22 0 0 1 11.7321 22

11 column 11 0 0 1 6.3304 11

12 mu 1

Fault 0 R header SECTIONS DIMNS GSTRUCT

Last line read was: !r Repl 0 0 0 0

ninerr4 variety id pid raw rep nloc yield lat

Model specification: TERM LEVELS GAMMAS

variety 56

mu 1

12 factors defined [max 500].

0 variance parameters [max1500]. 2 special structures

Final parameter values
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Last line read was: !r Repl 0 0 0 0

12 0 242 224 8000

Finished: 28 Jul 2005 09:53:16.775 R header SECTIONS DIMNS GSTRUCT

Inserting a comma on the end of the first line of the model to give

yield ∼ mu variety,
!r Repl

solves that problem but produces the error message

Error reading model factor list

because Repl should have been spelt repl. Portion of the output is displayed.
Since the model line is parsed before the data is read, this run failed before
reading the data.

ASReml 1.99a [01 Aug 2005] nin alliance trial

Build: d [27 Jul 2005] 32 bit

28 Jul 2005 10:06:48.042 64.00 Mbyte Windows ninerr5

Licensed to: Arthur Gilmour

Folder: C:\data\ex\manex

variety !A

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 1 is active

Reading nin.asd FREE FORMAT skipping 1 lines

Fault 0 Error reading model factor list

Last line read was: Repl

Currently defined structures, COLS and LEVELS

1 variety 1 2 2 0 0 0

2 id 1 1 1 0 1 0

3 pid 1 1 1 0 2 0

4 raw 1 1 1 0 3 0

5 repl 1 4 4 0 4 0

6 nloc 1 1 1 0 5 0

:

Finished: 28 Jul 2005 10:06:49.173 Error reading model factor list
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6. Misspelt factor name and 7. Wrong levels declaration in the G struc-
ture definition lines

nin alliance trial
...

nin89.asd !skip 1

yield ∼ mu variety

!r Repl

0 0 1

Repl 1

2 0 IDV 0.1

The next fault ASReml detects is

G structure header: Factor, order

indicating that there is something wrong in
the G structure definition lines. In this case
the replicate term in the first G structure def-
inition line has been spelt incorrectly. To cor-
rect this error replace Repl with repl.

ASReml 1.99a [01 Aug 2005] nin alliance trial

Build: c [26 Jul 2005] 32 bit

27 Jul 2005 15:41:52.606 64.00 Mbyte Windows ninerr6

Licensed to: Arthur Gilmour

Folder: C:\data\ex\manex

variety !A

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 1 is active

Reading nin.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Using 224 records of 242 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 28.5000 56

2 id 0 0 1.000 28.50 56.00

3 pid 0 0 1101. 2628. 4156.

4 raw 0 0 21.00 510.5 840.0

5 repl 4 0 0 1 2.5000 4

6 nloc 0 0 4.000 4.000 4.000

7 yield Variate 0 0 1.050 25.53 42.00

8 lat 0 0 4.300 27.22 47.30

9 long 0 0 1.200 14.08 26.40

10 row 22 0 0 1 11.7321 22

11 column 11 0 0 1 6.3304 11

12 mu 1

Fault 1 G structure header: Factor, order

Last line read was: Repl 1 0 0 0 0

ninerr6 variety id pid raw rep nloc yield lat
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Model specification: TERM LEVELS GAMMAS

variety 56

mu 1

repl 4 0.100

SECTIONS 224 4 1

TYPE 0 0 0

STRUCT 224 0 0 0 0 0 0

12 factors defined [max 500].

4 variance parameters [max1500]. 2 special structures

Final parameter values 0.10000 1.0000

Last line read was: Repl 1 0 0 0 0

12 1 242 224 8000

Finished: 27 Jul 2005 15:41:53.668 G structure header: Factor, order

Fixing the header line, we then get the error message

Structure / Factor mismatch

This arose because repl has 4 levels but we have only declared 2 in the G struc-
ture model line. The G structure should read

repl 1
4 0 IDV 0.1

The last lines of the output with this error are displayed below.

11 column 11 0 0 1 6.3304 11

12 mu 1

2 identity 0.1000

Structure for repl has 2 levels defined

Fault 1 Structure / Factor mismatch

Last line read was: 2 0 IDV 0.1 0 0 0 0 0

ninerr7 variety id pid raw rep nloc yield lat

Model specification: TERM LEVELS GAMMAS

variety 56

mu 1

repl 4 0.100

SECTIONS 224 4 1

TYPE 0 0 1002

STRUCT 224 0 0 0 0 0 0
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2 1 0 5 0 1 0

12 factors defined [max 500].

5 variance parameters [max1500]. 2 special structures

Final parameter values 0.10000 1.0000 0.10000

Last line read was: 2 0 IDV 0.1 0 0 0 0 0

12 1 242 224 8000

Finished: 27 Jul 2005 15:41:57.153 Structure / Factor mismatch

8. A misspelt factor name in the predict statement

The final error in the job is that a factor name is misspelt in the predict statement.
This is a non-fatal error. The faulty statement is simply ignored by ASReml and
no .pvs file is produced. To rectify this statement correct voriety to variety.see Chapter 13

9. Forgetting mv in a spatial analysis

The first error message from running part 2 of the job is

R structures imply 0 + 242 records: only 224 exist

Checking the seventh line of the output below, we see that there were 242 records
read but only 224 were retained for analysis. There are three reasons records are
dropped.
1. the !FILTER qualifier has been specified,
2. the !D transformation qualifier has been specified and
3. there are missing values in the response variable and the user has not specified
that they be estimated.
The last applies here so we must change the model line to read yield ∼ mu
variety mv.

Folder: C:\data\ex\manex

variety !A

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 2 is active

Reading nin.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield

Using 224 records of 242 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 28.5000 56
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:

11 column 11 0 0 1 6.3304 11

12 mu 1

11 AR=AutoReg 0.1000

22 AR=AutoReg 0.1000

Maybe you need to include ’mv’ in the model

Fault 1 R structures imply 0 + 242 records: only 224 e

Last line read was: 22 column AR1 0.1 0 0 0 0 0

ninerr9 variety id pid raw rep nloc yield lat

Model specification: TERM LEVELS GAMMAS

variety 56

mu 1

SECTIONS 242 3 1

STRUCT 11 1 1 4 1 1 10

22 1 1 5 1 1 11

12 factors defined [max 500].

5 variance parameters [max1500]. 2 special structures

Final parameter values 0.0000 -.10000E-360.10000

0.10000

Last line read was: 22 column AR1 0.1 0 0 0 0 0

12 1 242 224 8000

Finished: 27 Jul 2005 15:42:10.192 R structures imply 0+242 records: only 224 exist

10. Field layout error in a spatial analysis

The final common error we highlight is the misspecification of the field layout. In
this case we have ’accidently’ switched the levels in rows and columns. However,
ASReml can detect this error because we have also asked it to sort the data into
field order. Had sorting not been requested, ASReml would not have been able
to detect that the lines of the data file were not sorted into the appropriate field
order and spatial analysis would be wrong.

:

Folder: C:\data\ex\manex

variety !A

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 2 is active

Reading nin.asd FREE FORMAT skipping 1 lines

Univariate analysis of yield
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Using 242 records of 242 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 variety 56 0 0 1 26.4545 56

:

10 row 22 0 0 1 11.5000 22

11 column 11 0 0 1 6.0000 11

12 mu 1

13 mv_estimates 18

11 AR=AutoReg 0.1000

22 AR=AutoReg 0.1000

Warning: Spatial mapping information for side 1 of order 11

ranges from 1.0 to 22.0

Warning: Spatial mapping information for side 2 of order 22

ranges from 1.0 to 11.0

Fault 2 Sorting data into field order

Last line read was: 22 column AR1 0.1 0 0 0 0 0

ninerr10 variety id pid raw rep nloc yield lat

Model specification: TERM LEVELS GAMMAS

variety 56

mu 1

mv_estimates 18

SECTIONS 242 4 1

STRUCT 11 1 1 5 1 1 10

22 1 1 6 1 1 11

13 factors defined [max 500].

6 variance parameters [max1500]. 2 special structures

Final parameter values 0.0000 -.10000E-360.10000

0.10000

Last line read was: 22 column AR1 0.1 0 0 0 0 0

13 2 242 242 8000

Finished: 27 Jul 2005 15:42:31.733 Sorting data into field order



14 Error messages 228

14.5 Information, Warning and Error messages

ASReml prints information, warning and error messages in the .asr file. The
major information messages are in Table 14.2. A list of warning messages together
with the likely meaning(s) is presented in Table 14.1. Error messages with their
probable cause(s) is presented in Table 14.3.

Table 14.1: Some information messages and comments

information message comment

Logl converged the REML log-likelihood changes between iter-
ations were less than 0.002 * iteration number
and variance parameter values appear stable.

BLUP run done A full iteration has not been completed. See
discussion of !BLUP.

JOB ABORTED by USER See discussion of ABORTASR.NOW.

Logl converged, parameters not

converged

the change in REML log-likelihood was small
and convergence was assumed but the param-
eters are, in fact, still changing.

Logl not converged the maximum number of iterations was
reached before the REML log-likelihood con-
verged. Examine the sequence of estimates in
the .res file. You may need more iterations
in which case restart with the !CONTINUE com-
mand line option (see Section 12.3 on job con-
trol). Otherwise restart with more appropri-
ate initial variances. It may be necessary to
simplify the model and estimate the dominant
components before estimating other terms.

Warning: Only one iteration

performed

Parameter values are not at the REML solu-
tion.

Parameters unchanged after one

iteration.

Parameters appear to be at the REML solu-
tion in that the parameter values are stable.
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Table 14.2: List of warning messages and likely meaning(s)

warning message likely meaning

Warning: e missing values

generated by !^ transformation

data values should be positive.

Warning: i singularities in AI

matrix

usually means variance model is overparame-
terized.

Warning: m variance structures

were modified

the structures are probably at the boundary
of the parameter space.

Warning: n missing values were

detected in the design

either use !MVINCLUDE or delete the records.

Warning: n negative weights it is better to avoid negative weights unless you
can check ASReml is doing the correct thing
with them.

Warning: r records were read

from multiple lines

check you have the intended number of fields
per line.

WARNING term has more levels [ ##

] than expected [ ## ]:

You have probably mis-specified the number
of levels in the factor or omitted the !I qual-
ifier (see Section 5.4 on data field definition
syntax). ASReml corrects the number of lev-
els.

Warning: term in the predict

!IGNORE list

the term did not appear in the model.

Warning: term in the predict

!USE list

the term did not appear in the model.

Warning: term is ignored for

prediction

terms like units and mv cannot be included in
prediction.

Warning: Check if you need the

!RECODE qualifier

!RECODE may be needed if the binary file was
not prepared with ASReml.

Warning: Code B - fixed at a

boundary (!GP)

suggest drop the term and refit the model.

Warning: Eigen analysis check of

US matrix skipped

matrix is probably OK.

WARNING: Extra lines on the end

of the input file ...:

this indicates that there are some lines on the
end of the .as file that were not used. The
first ”extra” line is displayed. This is only a
problem if you intended ASReml to read these
lines.

Warning: Fewer levels found in

term
ASReml increases to the correct value.

Warning: FIELD DEFINITION lines

should be INDENTED

indent them to avert this message.
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List of warning messages and likely meaning(s)

warning message likely meaning

Warning: Fixed levels for factor user nominated more levels than are permit-
ted.

Warning: Initial gamma value is

zero

constraint parameter is probably wrongly as-
signed.

Warning: Invalid argument. fix the argument.

Warning: It is usual to include

Trait

in multivariate analysis model.

Warning: LogL Converged;

Parameters Not Converged

you may need more iterations.

Warning: LogL not converged restart to do more iterations (see !CONTINUE).

Warning: Missing cells in table missing cells are normally not reported.

Warning: More levels found in

term
consider setting levels correctly.

Warning: PREDICT LINE IGNORED -

TOO MANY

limit is 100.

Warning: PREDICT statement is

being ignored

because it contains errors.

Warning: Second occurrence of

term dropped

if you really want to fit this term twice, create
a copy with another name.

Warning: Spatial mapping

information for side

gives details so you can check ASReml is doing
what you intend.

Warning: Standard errors that is, these standard errors are approximate.

Warning: SYNTAX CHANGE: text may

be invalid

use the correct syntax.

Warning: The !A qualifier

ignored when reading BINARY data

the !A fields will be treated as factors but are
not encoded.

Warning: The !SPLINE qualifier

has been redefined.

use correct syntax.

Warning: The !X !Y !G qualifiers

are ignored. There is no data to

plot

revise the qualifier arguments.

Warning: The estimation was

ABORTED

do not accept the estimates printed.

Warning: The labels for

predictions are erroneous

the labels for predicted terms are probably out
of kilter. Try a simpler predict statement. If
the problem persists, send for help.
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List of warning messages and likely meaning(s)

warning message likely meaning

Warning: This US structure is

not positive definite

check the initial values.

Warning: Unrecognised qualifier

at character

the qualifier either is misspelt or is in the
wrong place.

Warning: US matrix was not

positive definite: MODIFIED

the initial values were modified.

Warning: User specified spline

points

the points have been rescaled to suit the data
values.

Warning: Variance parameters

were modified by BENDing

ASReml may not have converged to the best
estimate.

WARNING Likelihood decreased.

Check gammas and singularities.:

a common reason is that some constraints have
restricted the gammas. Add the !GU qualifier
to any factor definition whose gamma value
is approaching zero (or the correlation is ap-
proaching (-)1. Alternatively, more singular-
ities may have been detected. You should
identify where the singularities are expected
and modify the data so that they are omitted
or consistently detected. One possibility is to
centre and scale covariates involved in interac-
tions so that their standard deviation is close
to 1.

Table 14.3: Alphabetical list of error messages and probable
cause(s)/remedies

error message probable cause/remedy

!PRINT: Cannot open output file Check filename.

AINV/GIV matrix undefined or

wrong size

Check the size of the factor associated with
the AINV/GIV structure.

ASReml command file is EMPTY: The job file should be in ASCII format.

ASReml failed in ... Try running the job with increased workspace,
or using a simpler model. Otherwise send the
job to VSN (mailto:support@asreml.co.uk)
for investigation.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Continue from .rsv file Try running without the !CONTINUE qualifier.

Convergence failed the program did not proceed to convergence
because the REML log-likelihood was fluctuat-
ing wildly. One possible reason is that some
singular terms in the model are not being de-
tected consistently. Otherwise, the updated G
structures are not positive definite. There are
some things to try:

– define US structures as positive definite by
using !GP,

– supply better starting values,

– fix parameters that you are confident of
while getting better estimates for others
(that is, fix variances when estimating co-
variances),

– fit a simpler model,

– reorganise the model to reduce covariance
terms (for example, use CORUH instead of
US.)

Correlation structure is not

positive definite

It is best to start with a positive definite corre-
lation structure. Maybe use a structured cor-
relation matrix.

Define structure for ... A variance structure should be specified for
this term.

Error in !CONTRAST label factor

values

The error could be in the variable(factor)
name or in the number of values or the list
of values.

Error in !SUBSET label factor

values

The error could be in the variable(factor)
name or in the number of values or the list
of values.

Error in R structure: model

checks

the error model is not correctly specified.

Error opening file the file did not exist or was of the wrong file
type (binary = unformatted, sequential).

Error reading something There are several messages of this form where
something is what ASReml is attempting to
read. Either there is an error telling ASReml
to read something when it does not need to,
or there is an error in the way something is
specified.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Error reading the data: the data file could not be interpreted: al-
phanumeric fields need the !A qualifier.

Error reading the DATA FILENAME

line

data file name may be wrong

Error reading the model factor

list

the model specification line is in error: a vari-
able is probably misnamed.

Error setting constraints (!VCC)

on variance components

The !VCC constraints are specified last of all
and require knowing the position of each pa-
rameter in the parameter vector.

Error setting dependent variable the specified dependent variable name is not
recognised.

Error setting MBF design matrix:

!MBF mbf(x,k) filename

It is likely that the covariate values to not
match the values supplied in the file. The val-
ues in the file should be in sorted order.

Error structures are wrong size: the declared size of the error structures does
not match the actual number of data records.

Error when reading knot point

values

There is some problem on the !SPLINE line. It
could be a wrong variable name or the wrong
number of knot points. Knot points should be
in increasing order.

Failed forming R/G scores...? Try increasing workspace.

Failed ordering Level labels The problem may be due to the use of the
!SORT qualifier.

Failed to parse R/G structure

line

Failed to read R/G structure line

May be an unrecognised factor/model-term
name or variance structure name or wrong
count of initial values, possible on an earlier
line. May be insufficient lines in the job.

Failed to process MYOWNGDG files Check your MYOWNGDG program and the
.gdg file.

Failed when sorting pedigree ...

Failed when processing pedigree

file ...

Maybe increase !WORKSPACE.

Failed while ordering equations. Try increasing the workspace or simplifying
the model.



14 Error messages 234

Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

FORMAT error reading factor

Definitions:

Likely causes are

– bad syntax or invalid characters in the vari-
able labels; variable labels must not include
any of these symbols; !|-+(:#$ and .,

– the data file name is misspelt,

– there are too many variables declared or
there is no valid value supplied with an
arithmetic transformation option.

G-structure header: Factor

order:

there is a problem reading G structure header
line. The line must contain the name of a term
in the linear model spelt exactly as it appears
in the model

G structure: ORDER 0 MODEL

GAMMAS:

a G structure line cannot be interpreted.

G structure size does not match The size of the structure defined does not agree
with the model term that it is associated with.

Gamma Constraint READ error Check the syntax.

Getting Pedigree: an error occurred processing the pedigree. The
pedigree file must be ascii, free format with
ANIMAL, SIRE and DAM as the first three fields.

GLM Bounds failure ASReml failed to calculate the GLM working
variables or weights. Check the data.

Increase declared levels for

factor ...

Either the field has alphanumeric values but
has not been declared using the !A qualifier,
or there is not enough space to hold the levels
of the factor. To ’increase the levels’, insert
the expected number of levels after the !A or
!I qualifier in the field definition.

Increase workspace ... Use !WORKSPACE s to increase the
workspace available to ASReml . If the data
set is not extremely big, check the data
summary.

Insufficient data read from file Maybe the response variable is all missing.

Insufficient points for : there must be at least 3 distinct data values
for a spline term
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Insufficient workspace. If ASReml has not obtained the maximum
available workspace, then use !WORKSPACE to
increase it. The problem could be with the
way the model is specified. Try fitting a sim-
pler model or using a reduced data set to dis-
cover where the workspace is being used.

invalid analysis trait number The response variable nominated by the !YVAR
command line qualifier is not in the data.

Invalid binary data

Invalid Binomial Variable

The data values are out of the expected range
for binary/binomial data.

Invalid definition of factor ... there is a problem with forming one of the
generated factors. The most probable cause
is that an interaction cannot be formed.

Invalid error structure for

Multivariate Analysis

You must either use the US error structure or
use the !ASUV qualifier (and maybe include mv

in the model).

Invalid factor definition: a term in the model has no levels

Invalid factor in model: a term in the model specification is not among
the terms that have been defined. Check the
spelling.

Invalid model factor ... : there is a problem with the named variable.

Invalid SOURCE in R structure

definition

The second field in the R structure line does
not refer to a variate inthe data.

Invalid weight/filter column

number:

the weight and filter columns must be data
fields. Check the data summary.

Iteration aborted because of

singularities

See the discussion of !AISINGULARITIES.

Iteration failed Maybe increase workspace or restruc-
ture/simplyfy the model.

Maximum number of special

structures exceeded

special structures are weights, the Ainverse
and GIV structures. The limit is 98 and so no
more than 96 GIV structures can be defined.

Maximum number of variance

parameters exceeded

The limit is 1500. It may be possible to re-
structure the job so the limit is not exceeded,
assuming that the acrual number of parame-
ters to be estimated is less.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Missing/faulty !SKIP or !A needed

for ...

ASReml failed to read the first data record.
Maybe it is a heading line which should be
skipped by using the !SKIP qualifier, or maybe
the field is an alphanumeric field but has not
been declared so with the !A qualifier.

Missing values in design

variables/factors

You need to identify which design terms con-
tain missing values and decide whether delete
the records containing the missing values in
these variables or, if it is reasonable, to
treat the missing values as zero by using
!MVINCLUDE.

Missing Value Miscount forming

design

More missing values in the response were
found than expected.

Missing values not allowed here: missing observations have been dropped so
that multivariate structure is messed up.

Multiple trait mapping problem Maybe a trait name is repeated.

Negative Sum of Squares: This is typically caused by negative variance
parameters; try changing the starting values
or using the !STEP option. If the problem oc-
curs after several iterations it is likely that the
variance components are very small. Try sim-
plifying the model. In multivariate analyses it
arises if the error variance is (becomes) nega-
tive definite. Try specifying !GP on the struc-
ture line for the error variance.

NFACT out of range: too many terms are being defined.

No .giv file for Fix the argument to giv().

No residual variation: after fitting the model, the residual variation
is essentially zero, that is, the model fully ex-
plains the data. If this is intended, use the
!BLUP 1 qualifier so that you can see the es-
timates. Otherwise check that the dependent
values are what you intend and then identify
which variables explain it. Again, the !BLUP

1 qualifier might help.

Out of ... A program limit has been breached. Try sim-
plifying the model.

Out of memory ... use -WORKSPACE option to increase the
workspace allocation. It may be possible to
revise the models to increase sparsity.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Out of memory: forming design: factors are probably not declared properly.
Check the number of levels. Possibly use the
-WORKSPACE command line option.

Overflow structure table: occurs when space allocated for the structure
table is exceeded. There is room for three
structures for each model term for wich G
structures are explicitly declared. The error
might occur when ASReml needs to construct
rows of the table for structured terms when
the user has not formally declared the struc-
tures. Increasing g on the variance header line
for the number of G structures (see page 117)
will increase the space allocated for the table.
You will need to add extra explicit declara-
tions also.

Pedigree coding errors: check the pedigree file and see any messages in
the output. Check that identifiers and pedi-
grees are in chronological order.

Pedigree factor has wrong size: the A-inverse factors are not the same size as
the A-inverse. Delete the ainverse.bin file and
rerun the job.

Pedigree too big: program will need to be recompiled if file is
correct.

POWER model setup error Check the details for the distance based vari-
ance structure.

POWER Model: Unique points

disagree with size

Check the distances specified for the distance
based variance structure.

PROGRAM failed in ... Try increasing workspace. Otherwise send
problem to VSN.

PROGRAMMING error: Try increasing the memory, simplifying the
model and changing starting values for the
gammas. If this fails send the problem to
the VSN (mailto:support@asreml.co.uk) for
investigation.

reading !SELF option Check the argument.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Reading distances for POWER

structure

POWER structures are the spatial variance
models which require a list of distances. Dis-
tances should be in increasing order. If the
distances are not obtained from variables, the
’SORT’ field is zero and the distances are pre-
sented after all the R and G structures are
defined.

Reading factor names: something is wrong in the terms definitions. It
could also be that the data file is misnamed.

reading Overdispersion factor Check the argument.

READING OWN structures ... There is probably a problem with the output
from MYOWNGDG. Check the files, including
the time stamps to check the .gdg file is being
formed properly.

Reading the data: if you read less data than you expect, there
are two likely explanations. First, the data
file has less fields than implied by the data
structure definitions (you will probably read
half the expected number). Second, there is
an alphanumeric field where a numeric field is
expected.

Reading Update step size: check the !STEP qualifier argument.

Residual Variance is Zero: either all data is deleted or the model fully fits
the data.

R header SECTIONS DIMNS GSTRUCT

R structure header SITE DIM

GSTRUCT

Variance header: SEC DIM GSTRUCT

error with the variance header line. Often,
some other error has meant that the wrong
line is being interpreted as the variance header
line. Commonly, the model is written over sev-
eral lines but the incomplete lines do not all
end with a comma.

R structure error ORDER SORTCOL

MODEL GAMMAS:

an error reading the error model.

R structures are larger than

number of records

Maybe you need to include mv in the model to
stop ASReml discarding records with missing
values in the response variable.

REQUIRE !ASUV qualifier for this

R structure

REQUIRE I x E R structure

Without the ASUV qualifier, the multivariate
error variance MUST be specified as US.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Scratch: Apparently ASReml could not open a scratch
file to hold the transformed data. On unix,
check the temp directory //tmp for old large
scratch files.

Segmentation fault: this is a Unix memory error. The first thing to
try is to increase the memory workspace us-
ing the !WORKSPACE (see Section 12.3 on mem-
ory) command line option. Otherwise you may
need to send your data and the .as files to Cus-
tomer Support for debugging.

Singularity appeared in AI matrix

Singularity in Average

Information Matrix

See the discussion on !AISINGULARITIES

Sorting data by !Section !Row ...

Sorting the data into field order

the field order coding in the spatial error
model does not generate a complete grid with
one observation in each cell; missing values
may be deleted: they should be fitted. Also
may be due to incorrect specification of num-
ber of rows or columns.

STOP SCRATCH FILE DATA STORAGE

ERROR:

ASReml attempts to hold the data on a scratch
file. Check that the disk partition where the
scratch files might be written is not too full;
use the !NOSCRATCH qualifier to avoid these
scratch files.

Structure/ Factor mismatch: the declared size of a variance structure does
not match the size of the model term that it
is associated with.

Too many alphanumeric factor

level labels:

if the factor level labels are actually all inte-
gers, use the !I option instead. Otherwise,
you will have to convert a factor with alphanu-
meric labels to numeric sequential codes ex-
ternal to ASReml so that an !A option can be
avoided.

Too many factors with !A or !I;

max 100

The data file may need to be rewritten with
some factors recoded as sequential integers.

Too many [max 20] dependent

variables

This is an internal limit. Reduce the number
of response variables.
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Alphabetical list of error messages and probable cause(s)/remedies

error message probable cause/remedy

Unable to invert R or G [US?]

matrix:

this message occurs when there is an error
forming the inverse of a variance structure.
The probable cause is a non positive definite
(initial) variance structure (US, CHOL and ANTE

models). It may also occur if an identity by un-
structured (ID⊗US) error variance model is not
specified in a multivariate analysis (including
!ASMV), see Chapter 8. If the failure is on the
first iteration, the problem is with the starting
values. If on a subsequent iteration, the up-
dates have caused the problem. You could try
reducing the updates by using the !STEP qual-
ifier. Otherwise, you could try fitting an al-
ternative parameterisation. The CORGH model
may be more stable than the US model.

Unable to invert R or G [CORR?]

matrix:

generally refers to a problem setting up the
mixed model equations. Most commonly, it is
caused by a non positive definite matrix.

Variance structure is not

positive definite

Use better initial values or a structured vari-
ance matricx that is positive definite.

XFA model not permitted in R

structures

XFA may not be used as an R

structure

You may use FA or FACV. The R structure must
be positive definite.
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15.1 Introduction

In this chapter we present the analysis of a variety of examples. The primary
aim is to illustrate the capabilities of ASReml in the context of analysing real
data sets. We also discuss the output produced by ASReml and indicate when
problems may occur. Statistical concepts and issues are discussed as necessary
but we stress that the analyses are illustrative, not prescriptive.

15.2 Split plot design - Oats

The first example involves the analysis of a split plot design originally presented
by Yates (1935). The experiment was conducted to assess the effects on yield
of three oat varieties (Golden Rain, Marvellous and Victory) with four levels of
nitrogen application (0, 0.2, 0.4 and 0.6 cwt/acre). The field layout consisted of
six blocks (labelled I, II, III, IV, V and VI) with three whole-plots per block, each
split into four sub-plots. The three varieties were randomly allocated to the three
whole-plots while the four levels of nitrogen application were randomly assigned
to the four sub-plots within each whole-plot. The data is presented in Table 15.1.

Table 15.1 A split-plot field trial of oat varieties and nitrogen application

nitrogen
block variety 0.0cwt 0.2cwt 0.4cwt 0.6cwt

Victory 111 130 157 174
I GoldenRain 117 114 161 141

Marvellous 105 140 118 156
Victory 61 91 97 100

II GoldenRain 70 108 126 149
Marvelous 96 124 121 144
Victory 68 64 112 86

III GoldenRain 60 102 89 96
Marvellous 89 129 132 124
Victory 74 89 81 122

IV GoldenRain 64 103 132 133
Marvelous 70 89 104 117
Victory 62 90 100 116

V GoldenRain 80 82 94 126
Marvellous 63 70 109 99
Victory 53 74 118 113

VI GoldenRain 89 82 86 104
Marvellous 97 99 119 121

A standard analysis of these data recognises the two basic elements inherent in
the experiment. These two aspects are firstly the stratification of the experiment
units, that is the blocks, whole-plots and sub-plots, and secondly, the treatment
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structure that is superimposed on the experimental material. The latter is of
prime interest, in the presence of stratification. Thus the aim of the analysis
is to examine the importance of the treatment effects while accounting for the
stratification and restricted randomisation of the treatments to the experimental
units. The ASReml input file is presented below.

split plot example

blocks 6 # Coded 1...6 in first data field of oats.asd

nitrogen !A 4 # Coded alphabetically

subplots * # Coded 1...4

variety !A 3 # Coded alphabetically

wplots * # Coded 1...3

yield

oats.asd !SKIP 2

yield ~ mu variety nitrogen variety.nitrogen !r blocks blocks.wplots

predict nitrogen # Print table of predicted nitrogen means

predict variety

predict variety nitrogen !SED

The data fields were blocks, wplots, subplots, variety, nitrogen and yield.
The first five variables are factors that describe the stratification or experi-
ment design and treatments. The standard split plot analysis is achieved by
fitting the model terms blocks and blocks.wplots as random effects. The
blocks.wplots.subplots term is not listed in the model because this interac-
tion corresponds to the experimental units and is automatically included as the
residual term. The fixed effects include the main effects of both variety and
nitrogen and their interaction. The tables of predicted means and associated
standard errors of differences (SEDs) have been requested. These are reported in
the .pvs file. Abbreviated output is shown below.

Approximate stratum variance decomposition

Stratum Degrees-Freedom Variance Component Coefficients

blocks 5.00 3175.06 12.0 4.0 1.0

blocks.wplots 10.00 601.331 0.0 4.0 1.0

Residual Variance 45.00 177.083 0.0 0.0 1.0

Source Model terms Gamma Component Comp/SE % C

blocks 6 6 1.21116 214.477 1.27 0 P

blocks.wplots 18 18 0.598937 106.062 1.56 0 P

Variance 72 60 1.00000 177.083 4.74 0 P

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 5.0 245.14 <.001

4 variety 2 10.0 1.49 0.272

2 nitrogen 3 45.0 37.69 <.001

8 variety.nitrogen 6 45.0 0.30 0.932
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For simple variance component models such as the above, the default parame-
terisation for the variance component parameters is as the ratio to the residual
variance. Thus ASReml prints the variance component ratio and variance com-
ponent for each term in the random model in the columns labelled Gamma and
Component respectively.

The analysis of variance (ANOVA) is printed below this summary. The usual
decomposition has three strata, with treatment effects separating into different
strata as a consequence of the balanced design and the allocation of variety to
whole-plots. In this balanced case, it is straightforward to derive the ANOVA

estimates of the stratum variances from the REML estimates of the variance
components. That is

blocks stratum variance = 12σ̃2
b + 4σ̃2

w + σ̃2 = 3175.06

blocks.wplots stratum variance = 4σ̃2
w + σ̃2 = 601.331

residual stratum variance = σ̃2 = 177.083

where σ̃2
b is the blocks variance component, σ̃2

w is the blocks.wplots component
and σ̃2 is the residual variance.

The default output for testing fixed effects used by ASReml is a table of so-called
incremental F-statistics. These F-statistics are described in Section 6.12. The
statistics are simply the appropriate Wald test statistics divided by the number of
estimable effects for that term. In this example there are four terms included in
the summary. The overall mean (denoted by mu) is of no interest for these data.
The tests are sequential, that is the effect of each term is assessed by the change
in sums of squares achieved by adding the term to the current model, defined by
the model which includes those terms appearing above the current term given
the variance parameters. For example, the test of nitrogen is calculated from
the change in sums of squares for the two models mu variety nitrogen and mu
variety. No refitting occurs, that is the variance parameters are held constant
at the REML estimates obtained from the currently specified fixed model.

The incremental Wald statistics have an asymptotic χ2 distribution, with degrees
of freedom (df) given by the number of estimable effects (the number in the DF
column). In this example, the incremental F-statistics are numerically the same as
the ANOVA F-statistics, and ASReml has calculated the appropriate denominator
df for testing fixed effects. This is a simple problem for balanced designs, such
as the split plot design, but it is not straightforward to determine the relevant
denominator df in unbalanced designs, such as the rat data set described in the
next section.
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Tables of predicted means are presented for the nitrogen, variety, and variety by
nitrogen tables in the .pvs file. The qualifier !SED has been used on the third
predict statement and so the matrix of SEDs for the variety by nitrogen table
is printed. For the first two predictions, the average SED is calculated from the
average variance of differences. Note also that the order of the predictions (e.g.
0.6 cwt, 0.4 cwt 0.2 cwt 0 cwt for nitrogen) is simply the order those treatment
labels were discovered in the data file.

Split plot analysis - oat Variety.Nitrogen 28 Jul 2005 19:28:02

Ecode is E for Estimable, * for Not Estimable

---- ---- ---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ---- ----

Predicted values of yield

variety is averaged over fixed levels

blocks is ignored in the prediction (except where specifically included

wplots is ignored in the prediction (except where specifically included

nitrogen Predicted_Value Standard_Error Ecode

0.6_cwt 123.3889 7.1747 E

0.4_cwt 114.2222 7.1747 E

0.2_cwt 98.8889 7.1747 E

0_cwt 79.3889 7.1747 E

SED: Overall Standard Error of Difference 4.436

---- ---- ---- ---- ---- ---- ---- ---- 2 ---- ---- ---- ---- ---- ---- ----

Predicted values of yield

nitrogen is averaged over fixed levels

blocks is ignored in the prediction (except where specifically included

wplots is ignored in the prediction (except where specifically included

variety Predicted_Value Standard_Error Ecode

Marvellous 109.7917 7.7975 E

Victory 97.6250 7.7975 E

Golden_rain 104.5000 7.7975 E

SED: Overall Standard Error of Difference 7.079

---- ---- ---- ---- ---- ---- ---- ---- 3 ---- ---- ---- ---- ---- ---- ----

Predicted values of yield

blocks is ignored in the prediction (except where specifically included

wplots is ignored in the prediction (except where specifically included

nitrogen variety Predicted_Value Standard_Error Ecode

0.6_cwt Marvellous 126.8333 9.1070 E

0.6_cwt Victory 118.5000 9.1070 E

0.6_cwt Golden_rain 124.8333 9.1070 E

0.4_cwt Marvellous 117.1667 9.1070 E

0.4_cwt Victory 110.8333 9.1070 E

0.4_cwt Golden_rain 114.6667 9.1070 E
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0.2_cwt Marvellous 108.5000 9.1070 E

0.2_cwt Victory 89.6667 9.1070 E

0.2_cwt Golden_rain 98.5000 9.1070 E

0_cwt Marvellous 86.6667 9.1070 E

0_cwt Victory 71.5000 9.1070 E

0_cwt Golden_rain 80.0000 9.1070 E

Predicted values with SED(PV)

126.833

118.500 9.71503

124.833 9.71503 9.71503

117.167 7.68295 9.71503 9.71503

110.833 9.71503 7.68295 9.71503 9.71503

114.667 9.71503 9.71503 7.68295 9.71503

9.71503

108.500 7.68295 9.71503 9.71503 7.68295

9.71503 9.71503

89.6667 9.71503 7.68295 9.71503 9.71503

7.68295 9.71503 9.71503

98.5000 9.71503 9.71503 7.68295 9.71503

9.71503 7.68295 9.71503 9.71503

86.6667 7.68295 9.71503 9.71503 7.68295

9.71503 9.71503 7.68295 9.71503 9.71503

71.5000 9.71503 7.68295 9.71503 9.71503

7.68295 9.71503 9.71503 7.68295 9.71503

9.71503

80.0000 9.71503 9.71503 7.68295 9.71503

9.71503 7.68295 9.71503 9.71503 7.68295

9.71503 9.71503

SED: Standard Error of Difference: Min 7.6830 Mean 9.1608 Max 9.7150

15.3 Unbalanced nested design - Rats

The second example we consider is a data set which illustrates some further
aspects of testing fixed effects in linear mixed models. This example differs from
the split plot example, as it is unbalanced and so more care is required in assessing
the significance of fixed effects.

The experiment was reported by Dempster et al. (1984) and was designed to
compare the effect of three doses of an experimental compound (control, low
and high) on the maternal performance of rats. Thirty female rats (dams) were
randomly split into three groups of 10 and each group randomly assigned to the
three different doses. All pups in each litter were weighed. The litters differed in
total size and in the numbers of males and females. Thus the additional covariate,
littersize was included in the analysis. The differential effect of the compound
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on male and female pups was also of interest. Three litters had to be dropped
from experiment, which meant that one dose had only 7 dams. The analysis
must account for the presence of between dam variation, but must also recognise
the stratification of the experimental units (pups within litters) and that doses
and littersize belong to the dam stratum. Table 15.2 presents an indicative AOV

decomposition for this experiment.

Table 15.2 Rat data: AOV decomposition

stratum decomposition type df or ne

constant 1 F 1
dams

dose F 2
littersize F 1
dam R 27

dams.pups
sex F 1
dose.sex F 2

error R

The dose and littersize effects are tested against the residual dam variation, while
the remaining effects are tested against the residual within litter variation. The
ASReml input to achieve this analysis is presented below.

Rats example

dose 3 !A

sex 2 !A

littersize

dam 27

pup 18

weight

rats.asd !DOPATH 1 # Change DOPATH argument to select each PATH

!PATH 1

weight ~ mu littersize dose sex dose.sex !r dam

!PATH 2

weight ~ mu out(66) littersize dose sex dose.sex !r dam

!PATH 3

weight ~ mu littersize dose sex !r dam

!PATH 4

weight ~ mu littersize dose sex
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The input file contains an example of the use of the !DOPATH qualifier. Its ar-
gument specifies which part to execute. We will discuss the models in the two
parts. It also includes the !FCON qualifier to request conditional F-statistics.
Abbreviated output from part 1 is presented below.

1 LogL= 74.2174 S2= 0.19670 315 df 0.1000 1.000

2 LogL= 79.1579 S2= 0.18751 315 df 0.1488 1.000

3 LogL= 83.9408 S2= 0.17755 315 df 0.2446 1.000

4 LogL= 86.8093 S2= 0.16903 315 df 0.4254 1.000

5 LogL= 87.2249 S2= 0.16594 315 df 0.5521 1.000

6 LogL= 87.2398 S2= 0.16532 315 df 0.5854 1.000

7 LogL= 87.2398 S2= 0.16530 315 df 0.5867 1.000

8 LogL= 87.2398 S2= 0.16530 315 df 0.5867 1.000

Final parameter values 0.58667 1.0000

Approximate stratum variance decomposition

Stratum Degrees-Freedom Variance Component Coefficients

dam 22.56 1.27762 11.5 1.0

Residual Variance 292.44 0.165300 0.0 1.0

Source Model terms Gamma Component Comp/SE % C

dam 27 27 0.586674 0.969770E-01 2.92 0 P

Variance 322 315 1.00000 0.165300 12.09 0 P

Analysis of Variance NumDF DenDF_con F_inc F_con M P_con

7 mu 1 32.0 9049.48 1099.20 b <.001

3 littersize 1 31.5 27.99 46.25 B <.001

1 dose 2 23.9 12.15 11.51 A <.001

2 sex 1 299.8 57.96 57.96 A <.001

8 dose.sex 2 302.1 0.40 0.40 B 0.673

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

4 dam 27 effects fitted

SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1

2.27

3 possible outliers: see .res file

The iterative sequence has converged and the variance component parameter for
dam hasn’t changed for the last three iterations. The incremental Wald tests
indicate that the interaction between dose and sex is not significant. The F con
column helps us to assess the significance of the other terms in the model. It
confirms littersize is significant after the other terms, that dose is significant
when adjusted for littersize and sex but ignoring dose.sex, and that sex
is significant when adjusted for littersize and dose but ignoring dose.sex.
These tests respect marginality to the dose.sex interaction.



15 Examples 249

We also note the comment 3 possible outliers: see .res file. Checking
the .res file, we discover unit 66 has a standardised residual of -8.80 (see Fig-
ure 15.1). The weight of this female rat, within litter 9 is only 3.68, compared to
weights of 7.26 and 6.58 for two other female sibling pups. This weight appears
erroneous, but without knowledge of the actual experiment we retain the obser-
vation in the following. However, part 2 shows one way of ’dropping’ unit 66 by
fitting an effect for it with out(66).

Rats example   Residuals vs Fitted values
 Residuals (Y) −3.02: 1.22    Fitted values (X)     5.04:    7.63  

Figure 15.1 Residual plot for the rat data

We refit the model without the dose.sex term. Note that the variance parame-
ters are re-estimated, though there is little change from the previous analysis.

Source Model terms Gamma Component Comp/SE % C

dam 27 27 0.595157 0.979179E-01 2.93 0 P

Variance 322 317 1.00000 0.164524 12.13 0 P

Analysis of Variance NumDF DenDF_con F_inc F_con M P_con

7 mu 1 32.0 8981.48 1093.05 . <.001

3 littersize 1 31.4 27.85 46.43 A <.001

1 dose 2 24.0 12.05 11.42 A <.001

2 sex 1 301.7 58.27 58.27 A <.001

Part 4 shows what happens if we (wrongly) drop dam from this model. Even if
a random term is not ’significant’, it should not be dropped from the model if it
represents a strata of the design as in this case.
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Source Model terms Gamma Component Comp/SE % C

Variance 322 317 1.00000 0.253182 12.59 0 P

Analysis of Variance NumDF DenDF_con F_inc F_con M P_con

7 mu 1 317.0 47077.31 3309.42 . <.001

3 littersize 1 317.0 68.48 146.50 A <.001

1 dose 2 317.0 60.99 58.43 A <.001

2 sex 1 317.0 24.52 24.52 A <.001

15.4 Source of variability in unbalanced data - Volts

In this example we illustrate an analysis of unbalanced data in which the main
aim is to determine the sources of variation rather than assess the significance of
imposed treatments. The data are taken from Cox and Snell (1981) and involve an
experiment to examine the variability in the production of car voltage regulators.
Standard production of regulators involves two steps. Regulators are taken from
the production line to a setting station and adjusted to operate within a specified
voltage range. From the setting station the regulator is then passed to a testing
station where it is tested and returned if outside the required range.

The voltage of 64 regulators was set at 10 setting stations (setstat); between
4 and 8 regulators were set at each station. The regulators were each tested at
four testing stations (teststat). The ASReml input file is presented below.

Voltage data

teststat 4 # 4 testing stations tested each regulator

setstat !A # 10 setting stations each set 4-8 regulators

regulatr 8 # regulators numbered within setting stations

voltage

voltage.asd !skip 1

voltage ~ mu !r setstat setstat.regulatr teststat setstat.teststat

0 0 0

The factor regulatr numbers the regulators within each setting station. Thus
the term setstat.regulatr allows for differential effects of each regulator, while
the other terms examine the effects of the setting and testing stations and possible
interaction. The abbreviated output is given below

LogL= 188.604 S2= 0.67074E-01 255 df

LogL= 199.530 S2= 0.59303E-01 255 df
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LogL= 203.007 S2= 0.52814E-01 255 df

LogL= 203.240 S2= 0.51278E-01 255 df

LogL= 203.242 S2= 0.51141E-01 255 df

LogL= 203.242 S2= 0.51140E-01 255 df

Source Model terms Gamma Component Comp/SE % C

setstat 10 10 0.233418 0.119371E-01 1.35 0 P

setstat.regulatr 80 64 0.601817 0.307771E-01 3.64 0 P

teststat 4 4 0.642752E-01 0.328706E-02 0.98 0 P

setstat.teststat 40 40 0.100000E-08 0.511404E-10 0.00 0 B

Variance 256 255 1.00000 0.511404E-01 9.72 0 P

Warning: Code B - fixed at a boundary (!GP) F - fixed by user

? - liable to change from P to B P - positive definite

C - Constrained by user (!VCC) U - unbounded

S - Singular Information matrix

The convergence criteria has been satisfied after six iterations. A warning message
in printed below the summary of the variance components because the variance
component for the setstat.teststat term has been fixed near the boundary.
The default constraint for variance components (!GP) is to ensure that the REML

estimate remains positive. Under this constraint, if an update for any variance
component results in a negative value then ASReml sets that variance component
to a small positive value. If this occurs in subsequent iterations the parameter is
fixed to a small positive value and the code B replaces P in the C column of the
summary table. The default constraint can be overridden using the !GU qualifier,
but it is not generally recommended for standard analyses.

Figure 15.2 presents the residual plot which indicates two unusual data values.
These values are successive observations, namely observation 210 and 211, being
testing stations 2 and 3 for setting station 9(J), regulator 2. These observa-
tions will not be dropped from the following analyses for consistency with other
analyses conducted by Cox and Snell (1981) and in the GENSTAT manual.

The REML log-likelihood from the model without the setstat.teststat term
was 203.242, the same as the REML log-likelihood for the previous model. Ta-
ble 15.3 presents a summary of the REML log-likelihood ratio for the remaining
terms in the model. The summary of the ASReml output for the current model is
given below. The column labelled Comp/SE is printed by ASReml to give a guide
as to the significance of the variance component for each term in the model. The
statistic is simply the REML estimate of the variance component divided by the
square root of the diagonal element (for each component) of the inverse of the
average information matrix. The diagonal elements of the expected (not the av-
erage) information matrix are the asymptotic variances of the REML estimates
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ltage example 5−3−6 from the GENSTAT REML manual   Residuals vs Fitted valu
 Residuals (Y) −1.08: 1.45    Fitted values (X)    15.56:   16.81  

Figure 15.2 Residual plot for the voltage data

of the variance parameters. These Comp/SE statistics cannot be used to test the
null hypothesis that the variance component is zero. If we had used this crude
measure then the conclusions would have been inconsistent with the conclusions
obtained from the REML log-likelihood ratio (see Table 15.3).

Source Model terms Gamma Component Comp/SE % C

setstat 10 10 0.233417 0.119370E-01 1.35 0 P

setstat.regulatr 80 64 0.601817 0.307771E-01 3.64 0 P

teststat 4 4 0.642752E-01 0.328705E-02 0.98 0 P

Variance 256 255 1.00000 0.511402E-01 9.72 0 P

Table 15.3: REML log-likelihood ratio for the variance components in the voltage
data

REML −2×
terms log-likelihood difference P-value

− setstat 200.31 5.864 .0077
− setstat.regulatr 184.15 38.19 .0000
− teststat 199.71 7.064 .0039
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15.5 Balanced repeated measures - Height

The data for this example is taken from the GENSTAT manual. It consists of
a total of 5 measurements of height (cm) taken on 14 plants. The 14 plants
were either diseased or healthy and were arranged in a glasshouse in a completely
random design. The heights were measured 1, 3, 5, 7 and 10 weeks after the
plants were placed in the glasshouse. There were 7 plants in each treatment. The
data are depicted in Figure 15.3 obtained by qualifier line
!Y y1 !G tmt !JOIN
in the following multivariate ASReml job.

This is plant data multivariate   
Y=y1             X=Traits    G=tmt                

  1   2

Y−axis:   21.0000  130.5000   X−axis:    0.5000    5.5000   

Figure 15.3 Trellis plot of the height for each of 14 plants

In the following we illustrate how various repeated measures analyses can be
conducted in ASReml. For these analyses it is convenient to arrange the data
in a multivariate form, with 7 fields representing the plant number, treatment
identification and the 5 heights. The ASReml input file, up to the specification
of the R structure is

This is plant data multivariate

tmt !A # Diseased Healthy

plant 14

y1 y3 y5 y7 y10

grass.asd !skip 1 !ASUV
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The focus is modelling of the error variance for the data. Specifically we fit the
multivariate regression model given by

Y = DT + E (15.1)

where Y 14×5 is the matrix of heights, D14×2 is the design matrix, T 2×5 is the
matrix of fixed effects and E14×5 is the matrix of errors. The heights taken on
the same plants will be correlated and so we assume that

var (vec(E)) = I14 ⊗Σ (15.2)

where Σ5×5 is a symmetric positive definite matrix.

The variance models used for Σ are given in Table 15.4. These represent some
commonly used models for the analysis of repeated measures data (see Wolfinger,
1986). The variance models are fitted by changing the last four lines of the input
file. The sequence of commands for the first model fitted is

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt !r units

1 2 0

14

Trait

Table 15.4 Summary of variance models fitted to the plant data

number of REML
model parameters log-likelihood BIC

Uniform 2 -196.88 401.95
Power 2 -182.98 374.15
Heterogeneous Power 6 -171.50 367.57
Antedependence (order 1) 9 -160.37 357.51
Unstructured 15 -158.04 377.50

The split plot in time model can be fitted in two ways, either by fitting a units
term plus an independent residual as above, or by specifying a CORU variance
model for the R-structure as follows

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

1 2 0

14

Trait 0 CORU .5



15 Examples 255

The two forms for Σ are given by

Σ = σ2
1J + σ2

2I, units
Σ = σ2

eI + σ2
eρ(J − I), CORU

(15.3)

It follows that

σ2
e = σ2

1 + σ2
2

ρ = σ2
1

σ2
1+σ2

2

(15.4)

Portions of the two outputs are given below. The REML log-likelihoods for the
two models are the same and it is easy to verify that the REML estimates of
the variance parameters satisfy (15.4), viz. σ2

e = 286.310 ≈ 159.858 + 126.528 =
286.386; 159.858/286.386 = 0.558191.
#

# !r units

#

LogL=-204.593 S2= 224.61 60 df 0.1000 1.000

LogL=-201.233 S2= 186.52 60 df 0.2339 1.000

LogL=-198.453 S2= 155.09 60 df 0.4870 1.000

LogL=-197.041 S2= 133.85 60 df 0.9339 1.000

LogL=-196.881 S2= 127.56 60 df 1.204 1.000

LogL=-196.877 S2= 126.53 60 df 1.261 1.000

Final parameter values 1.2634 1.0000

Source Model terms Gamma Component Comp/SE % C

units 14 14 1.26342 159.858 2.11 0 P

Variance 70 60 1.00000 126.528 4.90 0 P

#

# CORU

#

LogL=-196.975 S2= 264.10 60 df 1.000 0.5000

LogL=-196.924 S2= 270.14 60 df 1.000 0.5178

LogL=-196.886 S2= 278.58 60 df 1.000 0.5400

LogL=-196.877 S2= 286.23 60 df 1.000 0.5580

LogL=-196.877 S2= 286.31 60 df 1.000 0.5582

Final parameter values 1.0000 0.55819

Source Model terms Gamma Component Comp/SE % C

Variance 70 60 1.00000 286.310 3.65 0 P

Residual CORRelat 5 0.558191 0.558191 4.28 0 U

A more realistic model for repeated measures data would allow the correlations
to decrease as the lag increases such as occurs with the first order autoregressive
model. However, since the heights are not measured at equally spaced time points
we use the EXP model. The correlation function is given by

ρ(u) = φu

where u is the time lag is weeks. The coding for this is



15 Examples 256

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

1 2 0 # One error structure in two dimensions

14 # Outer dimension: 14 plants

Tr 0 EXP .5

1 3 5 7 10 # Time coordinates

A portion of the output is

LogL=-183.734 S2= 435.58 60 df 1.000 0.9500

LogL=-183.255 S2= 370.40 60 df 1.000 0.9388

LogL=-183.010 S2= 321.50 60 df 1.000 0.9260

LogL=-182.980 S2= 298.84 60 df 1.000 0.9179

LogL=-182.979 S2= 302.02 60 df 1.000 0.9192

Final parameter values 1.0000 0.91897

Source Model terms Gamma Component Comp/SE % C

Variance 70 60 1.00000 302.021 3.11 0 P

Residual POW-EXP 5 0.918971 0.918971 29.53 0 U

When fitting power models be careful to ensure the scale of the defining variate,
here time, does not result in an estimate of φ too close to 1. For example, use of
days in this example would result in an estimate for φ of about .993.

Residuals plotted against Row and Column position:    1
Range:     −45.11     34.86

Figure 15.4 Residual plots for the EXP variance model for the plant data

The residual plot from this analysis is presented in Figure 15.4. This suggests
increasing variance over time. This can be modelled by using the EXPH model,
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which models Σ by
Σ = D0.5CD0.5

where D is a diagonal matrix of variances and C is a correlation matrix with
elements given by cij = φ|ti−tj |. The coding for this is

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

1 2 0

14 !S2==1

Tr 0 EXPH .5 100 200 300 300 300

1 3 5 7 10

Note that it is necessary to fix the scale parameter to 1 (!S2==1) to ensure that
the elements of D are identifiable. Abbreviated output from this analysis is

1 LogL=-195.598 S2= 1.0000 60 df : 1 components constrained

2 LogL=-179.036 S2= 1.0000 60 df

3 LogL=-175.483 S2= 1.0000 60 df

4 LogL=-173.128 S2= 1.0000 60 df

5 LogL=-171.980 S2= 1.0000 60 df

6 LogL=-171.615 S2= 1.0000 60 df

7 LogL=-171.527 S2= 1.0000 60 df

8 LogL=-171.504 S2= 1.0000 60 df

9 LogL=-171.498 S2= 1.0000 60 df

10 LogL=-171.496 S2= 1.0000 60 df

Source Model terms Gamma Component Comp/SE % C

Residual POW-EXP 5 0.906917 0.906917 21.89 0 U

Residual POW-EXP 5 60.9599 60.9599 2.12 0 U

Residual POW-EXP 5 72.9904 72.9904 1.99 0 U

Residual POW-EXP 5 309.259 309.259 2.22 0 U

Residual POW-EXP 5 436.380 436.380 2.52 0 U

Residual POW-EXP 5 382.369 382.369 2.74 0 U

Covariance/Variance/Correlation Matrix POWER

61.11 0.8227 0.6769 0.5569 0.4156

54.88 72.80 0.8227 0.6769 0.5051

93.12 123.5 309.7 0.8227 0.6140

91.02 120.7 302.7 437.1 0.7462

63.57 84.34 211.4 305.3 382.9

Analysis of Variance DF F_inc

8 Trait 5 127.95

1 tmt 1 0.00

9 Tr.tmt 4 4.75

The last two models we fit are the antedependence model of order 1 and the
unstructured model. These require, as starting values the lower triangle of the
full variance matrix. We use the REML estimate of Σ from the heterogeneous
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power model shown in the previous output. The antedependence model models
Σ by the inverse cholesky decomposition

Σ−1 = UDU ′

where D is a diagonal matrix and U is a unit upper triangular matrix. For
an antedependence model of order q, then uij = 0 for j > i + q − 1. The
antedependence model of order 1 has 9 parameters for these data, 5 in D and 4
in U . The input is given by

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

1 2 0

14 !S2==1

Tr 0 ANTE

60.16

54.65 73.65

91.50 123.3 306.4

89.17 120.2 298.6 431.8

62.21 83.85 208.3 301.2 379.8

The abbreviated output file is

1 LogL=-171.501 S2= 1.0000 60 df

2 LogL=-170.097 S2= 1.0000 60 df

3 LogL=-166.085 S2= 1.0000 60 df

4 LogL=-161.335 S2= 1.0000 60 df

5 LogL=-160.407 S2= 1.0000 60 df

6 LogL=-160.370 S2= 1.0000 60 df

7 LogL=-160.369 S2= 1.0000 60 df

Source Model terms Gamma Component Comp/SE % C

Residual ANTE=UDU 1 0.268657E-01 0.268657E-01 2.44 0 U

Residual ANTE=UDU 1 -0.628413 -0.628413 -2.55 0 U

Residual ANTE=UDU 2 0.372801E-01 0.372801E-01 2.41 0 U

Residual ANTE=UDU 2 -1.49108 -1.49108 -2.54 0 U

Residual ANTE=UDU 3 0.599632E-02 0.599632E-02 2.43 0 U

Residual ANTE=UDU 3 -1.28041 -1.28041 -6.19 0 U

Residual ANTE=UDU 4 0.789713E-02 0.789713E-02 2.44 0 U

Residual ANTE=UDU 4 -0.967815 -0.967815 -15.40 0 U

Residual ANTE=UDU 5 0.390635E-01 0.390635E-01 2.45 0 U

Covariance/Variance/Correlation Matrix ANTE=UDU’

37.20 0.5946 0.3549 0.3114 0.3040

23.38 41.55 0.5968 0.5237 0.5112

34.83 61.89 258.9 0.8775 0.8565

44.58 79.22 331.4 550.8 0.9761

43.14 76.67 320.7 533.0 541.4

Analysis of Variance DF F_inc

8 Trait 5 188.84
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1 tmt 1 4.14

9 Tr.tmt 4 3.91

The iterative sequence converged and the antedependence parameter estimates
are printed columnwise by time, the column of U and the element of D. I.e.

D = diag




0.0269
0.0373
0.0060
0.0079
0.0391




,U =




1 −0.6284 0 0 0
0 1 −1.4911 0 0
0 0 1 −1.2804 0
0 0 0 1 −0.9678
0 0 0 0 1




.

Finally the input and output files for the unstructured model are presented below.
The REML estimate of Σ from the ANTE model is used to provide starting values.

###########

#input

###########

y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt

1 2 0

14 !S2==1

Tr 0 US

37.20

23.38 41.55

34.83 61.89 258.9

44.58 79.22 331.4 550.8

43.14 76.67 320.7 533.0 541.4

############

# output

############

1 LogL=-160.368 S2= 1.0000 60 df

2 LogL=-159.027 S2= 1.0000 60 df

3 LogL=-158.247 S2= 1.0000 60 df

4 LogL=-158.040 S2= 1.0000 60 df

5 LogL=-158.036 S2= 1.0000 60 df

Source Model terms Gamma Component Comp/SE % C

Residual US=UnStr 1 37.2262 37.2262 2.45 0 U

Residual US=UnStr 1 23.3935 23.3935 1.77 0 U

Residual US=UnStr 2 41.5195 41.5195 2.45 0 U

Residual US=UnStr 1 51.6524 51.6524 1.61 0 U

Residual US=UnStr 2 61.9169 61.9169 1.78 0 U

Residual US=UnStr 3 259.121 259.121 2.45 0 U

Residual US=UnStr 1 70.8113 70.8113 1.54 0 U
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Residual US=UnStr 2 57.6146 57.6146 1.23 0 U

Residual US=UnStr 3 331.807 331.807 2.29 0 U

Residual US=UnStr 4 551.507 551.507 2.45 0 U

Residual US=UnStr 1 73.7857 73.7857 1.60 0 U

Residual US=UnStr 2 62.5691 62.5691 1.33 0 U

Residual US=UnStr 3 330.851 330.851 2.29 0 U

Residual US=UnStr 4 533.756 533.756 2.42 0 U

Residual US=UnStr 5 542.175 542.175 2.45 0 U

Covariance/Variance/Correlation Matrix US=UnStructu

37.23 0.5950 0.5259 0.4942 0.5194

23.39 41.52 0.5969 0.3807 0.4170

51.65 61.92 259.1 0.8777 0.8827

70.81 57.61 331.8 551.5 0.9761

73.79 62.57 330.9 533.8 542.2

The antedependence model of order 1 is clearly more parsimonious than the
unstructured model. Table 15.5 presents the incremental Wald tests for each of
the variance models. There is a surprising level of discrepancy between models
for the Wald tests. The main effect of treatment is significant for the uniform,
power and antedependence models.

Table 15.5: Summary of Wald test for fixed effects for variance models fitted to the
plant data

treatment treatment.time
model (df=1) (df=4)

Uniform 9.41 5.10
Power 6.86 6.13
Heterogeneous power 0.00 4.81
Antedependence (order 1) 4.14 3.96
Unstructured 1.71 4.46
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15.6 Spatial analysis of a field experiment - Barley

In this section we illustrate the ASReml syntax for performing spatial and in-
complete block analysis of a field experiment. There has been a large amount
of interest in developing techniques for the analysis of spatial data both in the
context of field experiments and geostatistical data (see for example, Cullis and
Gleeson, 1991; Cressie, 1991; Gilmour et al., 1997). This example illustrates the
analysis of ’so-called’ regular spatial data, in which the data is observed on a
lattice or regular grid. This is typical of most small plot designed field exper-
iments. Spatial data is often irregularly spaced, either by design or because of
the observational nature of the study. The techniques we present in the following
can be extended for the analysis of irregularly spaced spatial data, though, larger
spatial data sets may be computationally challenging, depending on the degree
of irregularity or models fitted.

The data we consider is taken from Gilmour et al. (1995) and involves a field
experiment designed to compare the performance of 25 varieties of barley. The
experiment was conducted at Slate Hall Farm, UK in 1976, and was designed as
a balanced lattice square with replicates laid out as shown in Table 15.6. The
data fields were Rep, RowBlk, ColBlk, row, column and yield. Lattice row
and column numbering is typically within replicates and so the terms specified in
the linear model to account for the lattice row and lattice column effects would
be Rep.latticerow Rep.latticecolumn. However, in this example lattice rows
and columns are both numbered from 1 to 30 across replicates (see Table 15.6).
The terms in the linear model are therefore simply RowBlk ColBlk. Additional
fields row and column indicate the spatial layout of the plots.

The ASReml input file is presented below. Three models have been fitted to these
data. The lattice analysis is included for comparison in PATH 3. In PATH 1 we
use the separable first order autoregressive model to model the variance structure
of the plot errors. Gilmour et al. (1997) suggest this is often a useful model to
commence the spatial modelling process. The form of the variance matrix for the
plot errors (R structure) is given by

σ2Σ = σ2(Σc ⊗Σr) (15.5)

where Σc and Σr are 15 × 15 and 10 × 10 matrix functions of the column (φc)
and row (φr) autoregressive parameters respectively.

Gilmour et al. (1997) recommend revision of the current spatial model based
on the use of diagnostics such as the sample variogram of the residuals (from
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the current model). This diagnostic and a summary of row and column residual
trends are produced by default with graphical versions of ASReml when a spatial
model has been fitted to the errors. It can be suppressed, by the use of the -n
option on the command line. We have produced the following plots by use of the
-g22 option.

Table 15.6 Field layout of Slate Hall Farm experiment

Column - Replicate levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
6 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
7 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
8 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
9 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
10 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

Column - Rowblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 11 11 11 11 11 21 21 21 21 21
2 2 2 2 2 2 12 12 12 12 12 22 22 22 22 22
3 3 3 3 3 3 13 13 13 13 13 23 23 23 23 23
4 4 4 4 4 4 14 14 14 14 14 24 24 24 24 24
5 5 5 5 5 5 15 15 15 15 15 25 25 25 25 25
6 6 6 6 6 6 16 16 16 16 16 26 26 26 26 26
7 7 7 7 7 7 17 17 17 17 17 27 27 27 27 27
8 8 8 8 8 8 18 18 18 18 18 28 28 28 28 28
9 9 9 9 9 9 19 19 19 19 19 29 29 29 29 29
10 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30

Column - Colblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slate Hall example

Rep 6 # Six replicates of 5x5 plots in 2x3 arrangement

RowBlk 30 # Rows within replicates numbered across replicates

ColBlk 30 # Columns within replicates numbered across replicates

row 10 # Field row

column 15 # Field column
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variety 25

yield

barley.asd !skip 1 !DOPATH 1

!PATH 1 # AR1 x AR1

y ~ mu var

predict var

1 2

15 column AR1 0.1 # Second field is specified so ASReml can sort

10 row AR1 0.1 # records properly into field order

!PATH 2 # AR1 x AR1 + units

y ~ mu var !r units

predict var

1 2

15 column AR1 0.1

10 row AR1 0.1

!PATH 3 # incomplete blocks

y ~ mu var !r Rep Rowblk Colblk

predict var

Abbreviated ASReml output file is presented below. The iterative sequence has
converged to column and row correlation parameters of (.68377,.45859) respec-
tively. The plot size and orientation is not known and so it is not possible to
ascertain whether these values are spatially sensible. It is generally found that
the closer the plot centroids, the higher the spatial correlation. This is not always
the case and if the highest between plot correlation relates to the larger spatial
distance then this may suggest the presence of extraneous variation (see Gilmour
et al., 1997), for example. Figure 15.5 presents a plot of the sample variogram
of the residuals from this model. The plot appears in reasonable agreement with
the model.

The next model includes a measurement error or nugget effect component. That
is the variance model for the plot errors is now given by

σ2Σ = σ2(Σc ⊗Σr) + ψI150 (15.6)

where ψ is the ratio of nugget variance to error variance (σ2). The abbreviated
output for this model is given below. There is a significant improvement in the
REML log-likelihood with the inclusion of the nugget effect (see Table 15.7).

# AR1 x AR1

#

1 LogL=-739.681 S2= 36034. 125 df 1.000 0.1000 0.1000



15 Examples 264

Slate Hall example      f1 1
    Variogram of residuals   26 Aug 2002 17:08:51

0  

 1.569649   

Outer displacement Inner displacement

Figure 15.5: Sample variogram of the residuals from the AR1×AR1 model for the
Slate Hall data

2 LogL=-714.340 S2= 28109. 125 df 1.000 0.4049 0.1870

3 LogL=-703.338 S2= 29914. 125 df 1.000 0.5737 0.3122

4 LogL=-700.371 S2= 37464. 125 df 1.000 0.6789 0.4320

5 LogL=-700.324 S2= 38602. 125 df 1.000 0.6838 0.4542

6 LogL=-700.322 S2= 38735. 125 df 1.000 0.6838 0.4579

7 LogL=-700.322 S2= 38754. 125 df 1.000 0.6838 0.4585

8 LogL=-700.322 S2= 38757. 125 df 1.000 0.6838 0.4586

Final parameter values 1.0000 0.68377 0.45861

Source Model terms Gamma Component Comp/SE % C

Variance 150 125 1.00000 38756.6 5.00 0 P

Residual AR=AutoR 15 0.683767 0.683767 10.80 0 U

Residual AR=AutoR 10 0.458607 0.458607 5.55 0 U

Analysis of Variance NumDF DenDF F_inc Prob

8 mu 1 12.8 850.88 <.001

6 variety 24 80.0 13.04 <.001

# AR1 x AR1 + units

1 LogL=-740.735 S2= 33225. 125 df : 2 components constrained

2 LogL=-723.595 S2= 11661. 125 df : 1 components constrained

3 LogL=-698.498 S2= 46239. 125 df

4 LogL=-696.847 S2= 44725. 125 df

5 LogL=-696.823 S2= 45563. 125 df
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6 LogL=-696.823 S2= 45753. 125 df

7 LogL=-696.823 S2= 45796. 125 df

Source Model terms Gamma Component Comp/SE % C

units 150 150 0.106154 4861.48 2.72 0 P

Variance 150 125 1.00000 45796.3 2.74 0 P

Residual AR=AutoR 15 0.843795 0.843795 12.33 0 U

Residual AR=AutoR 10 0.682686 0.682686 6.68 0 U

Analysis of Variance NumDF DenDF F_inc Prob

8 mu 1 3.5 259.81 <.001

6 variety 24 75.7 10.21 <.001

The lattice analysis (with recovery of between block information) is presented
below. This variance model is not competitive with the preceding spatial models.
The models can be formally compared using the BIC values for example.

# IB analysis

1 LogL=-734.184 S2= 26778. 125 df

2 LogL=-720.060 S2= 16591. 125 df

3 LogL=-711.119 S2= 11173. 125 df

4 LogL=-707.937 S2= 8562.4 125 df

5 LogL=-707.786 S2= 8091.2 125 df

6 LogL=-707.786 S2= 8061.8 125 df

7 LogL=-707.786 S2= 8061.8 125 df

Source Model terms Gamma Component Comp/SE % C

Rep 6 6 0.528714 4262.39 0.62 0 P

RowBlk 30 30 1.93444 15595.1 3.06 0 P

ColBlk 30 30 1.83725 14811.6 3.04 0 P

Variance 150 125 1.00000 8061.81 6.01 0 P

Analysis of Variance NumDF DenDF F_inc Prob

8 mu 1 5.0 1216.29 <.001

6 variety 24 79.3 8.84 <.001

Finally, we present portions of the .pvs files to illustrate the prediction facility of
ASReml . The first five and last three variety means are presented for illustration.
The overall SED printed is the square root of the average variance of difference
between the variety means. The two spatial analyses have a range of SEDs which
are available if the !SED qualifier is used. All variety comparisons have the same
SED from the third analysis as the design is a balanced lattice square. The F-
statistic statistics for the spatial models are greater than for the lattice analysis.
We note the F-statistic for the AR1×AR1 + units model is smaller than the F-
statistic for the AR1×AR1.
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Predicted values of yield

#AR1 x AR1

variety Predicted_Value Standard_Error Ecode

1.0000 1257.9763 64.6146 E

2.0000 1501.4483 64.9783 E

3.0000 1404.9874 64.6260 E

4.0000 1412.5674 64.9027 E

5.0000 1514.4764 65.5889 E

. . .

23.0000 1311.4888 64.0767 E

24.0000 1586.7840 64.7043 E

25.0000 1592.0204 63.5939 E

SED: Overall Standard Error of Difference 59.05

#AR1 x AR1 + units

variety Predicted_Value Standard_Error Ecode

1.0000 1245.5843 97.8591 E

2.0000 1516.2331 97.8473 E

3.0000 1403.9863 98.2398 E

4.0000 1404.9202 97.9875 E

5.0000 1471.6197 98.3607 E

. . .

23.0000 1316.8726 98.0402 E

24.0000 1557.5278 98.1272 E

25.0000 1573.8920 97.9803 E

SED: Overall Standard Error of Difference 60.51

# IB

Rep is ignored in the prediction

RowBlk is ignored in the prediction

ColBlk is ignored in the prediction

variety Predicted_Value Standard_Error Ecode

1.0000 1283.5870 60.1994 E

2.0000 1549.0133 60.1994 E

3.0000 1420.9307 60.1994 E

4.0000 1451.8554 60.1994 E

5.0000 1533.2749 60.1994 E

. . .

23.0000 1329.1088 60.1994 E

24.0000 1546.4699 60.1994 E

25.0000 1630.6285 60.1994 E

SED: Overall Standard Error of Difference 62.02

Notice the differences in SE and SED associated with the various models. Choos-
ing a model on the basis of smallest SE or SED is not recommended because the
model is not necessarily fitting the variability present in the data.



15 Examples 267

Table 15.7 Summary of models for the Slate Hall data

REML number of
model log-likelihood parameters F-statistic SED

AR1×AR1 -700.32 3 13.04 59.0
AR1×AR1 + units -696.82 4 10.22 60.5
IB -707.79 4 8.84 62.0

15.7 Unreplicated early generation variety trial - Wheat

To further illustrate the approaches presented in the previous section, we con-
sider an unreplicated field experiment conducted at Tullibigeal situated in south-
western NSW. The trial was an S1 (early stage) wheat variety evaluation trial
and consisted of 525 test lines which were randomly assigned to plots in a 67
by 10 array. There was a check plot variety every 6 plots within each column.
That is the check variety was sown on rows 1,7,13,. . . ,67 of each column. This
variety was numbered 526. A further 6 replicated commercially available varieties
(numbered 527 to 532) were also randomly assigned to plots with between 3 to
5 plots of each. The aim of these trials is to identify and retain the top, say 20%
of lines for further testing. Cullis et al. (1989) considered the analysis of early
generation variety trials, and presented a one-dimensional spatial analysis which
was an extension of the approach developed by Gleeson and Cullis (1987). The
test line effects are assumed random, while the check variety effects are consid-
ered fixed. This may not be sensible or justifiable for most trials and can lead to
inconsistent comparisons between check varieties and test lines. Given the large
amount of replication afforded to check varieties there will be very little shrinkage
irrespective of the realised heritability.

We consider an initial analysis with spatial correlation in one direction and fitting
the variety effects (check, replicated and unreplicated lines) as random. We
present three further spatial models for comparison. The ASReml input file is

Tullibigeal trial

linenum

yield

weed

column 10

row 67

variety 532 # testlines 1:525, check lines 526:532
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wheat.asd !skip 1 !DOPATH 1

!PATH 1 # AR1 x I

y ~ mu weed mv !r variety

1 2

67 row AR1 0.1

10 column I 0

!PATH 2 # AR1 x AR1

y ~ mu weed mv !r variety

1 2

67 row AR1 0.1

10 column AR1 0.1

!PATH 3 # AR1 x AR1 + column trend

y ~ mu weed pol(column,-1) mv !r variety

1 2

67 row AR1 0.1

10 column AR1 0.1

!PATH 4 # AR1 x AR1 + Nugget + column trend

y ~ mu weed pol(column,-1) mv !r variety units

1 2

67 row AR1 0.1

10 column AR1 0.1

predict var

The data fields represent the factors variety, row and column, a covariate weed
and the plot yield (yield). There are three paths in the ASReml file. We begin
with the one-dimensional spatial model, which assumes the variance model for
the plot effects within columns is described by a first order autoregressive process.
The abbreviated output file is

1 LogL=-4280.75 S2= 0.12850E+06 666 df 0.1000 1.000 0.1000

2 LogL=-4268.57 S2= 0.12138E+06 666 df 0.1516 1.000 0.1798

3 LogL=-4255.89 S2= 0.10968E+06 666 df 0.2977 1.000 0.2980

4 LogL=-4243.76 S2= 88033. 666 df 0.7398 1.000 0.4939

5 LogL=-4240.59 S2= 84420. 666 df 0.9125 1.000 0.6016

6 LogL=-4240.01 S2= 85617. 666 df 0.9344 1.000 0.6428

7 LogL=-4239.91 S2= 86032. 666 df 0.9474 1.000 0.6596

8 LogL=-4239.88 S2= 86189. 666 df 0.9540 1.000 0.6668

9 LogL=-4239.88 S2= 86253. 666 df 0.9571 1.000 0.6700

10 LogL=-4239.88 S2= 86280. 666 df 0.9585 1.000 0.6714

Final parameter values 0.95918 1.0000 0.67205

Source Model terms Gamma Component Comp/SE % C

variety 532 532 0.959184 82758.6 8.98 0 P

Variance 670 666 1.00000 86280.2 9.12 0 P

Residual AR=AutoR 67 0.672052 0.672052 16.04 1 U
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Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 83.6 9799.18 <.001

3 weed 1 477.0 109.33 <.001

The iterative sequence converged, the REML estimate of the autoregressive pa-
rameter indicating substantial within column heterogeneity.

The abbreviated output from the two-dimensional AR1×AR1 spatial model is

1 LogL=-4277.99 S2= 0.12850E+06 666 df

2 LogL=-4266.13 S2= 0.12097E+06 666 df

3 LogL=-4253.05 S2= 0.10777E+06 666 df

4 LogL=-4238.72 S2= 83156. 666 df

5 LogL=-4234.53 S2= 79868. 666 df

6 LogL=-4233.78 S2= 82024. 666 df

7 LogL=-4233.67 S2= 82725. 666 df

8 LogL=-4233.65 S2= 82975. 666 df

9 LogL=-4233.65 S2= 83065. 666 df

10 LogL=-4233.65 S2= 83100. 666 df

Source Model terms Gamma Component Comp/SE % C

variety 532 532 1.06038 88117.5 9.92 0 P

Variance 670 666 1.00000 83100.1 8.90 0 P

Residual AR=AutoR 67 0.685387 0.685387 16.65 0 U

Residual AR=AutoR 10 0.285909 0.285909 3.87 0 U

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 41.7 6248.65 <.001

3 weed 1 491.2 85.84 <.001

The change in REML log-likelihood is significant (χ2
1 = 12.46, p < .001) with

the inclusion of the autoregressive parameter for columns. Figure 15.6 presents
the sample variogram of the residuals for the AR1×AR1 model. There is an
indication that a linear drift from column 1 to column 10 is present. We include
a linear regression coefficient pol(column,-1) in the model to account for this.
Note we use the ’-1’ option in the pol term to exclude the overall constant in
the regression, as it is already fitted. The linear regression of column number
on yield is significant (t = −2.96). The sample variogram (Figure 15.7) is more
satisfactory, though interpretation of variograms is often difficult, particularly for
unreplicated trials. This is an issue for further research. The abbreviated output
for this model and the final model in which a nugget effect has been included is

#AR1xAR1 + pol(column,-1)

1 LogL=-4270.99 S2= 0.12730E+06 665 df

2 LogL=-4258.95 S2= 0.11961E+06 665 df



Tullibigeal trial      i2 1
    Variogram of residuals   26 Aug 2002 19:03:11
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Figure 15.6: Sample variogram of the residuals from the AR1×AR1 model for the
Tullibigeal data

Tullibigeal trial      i3 1
    Variogram of residuals   26 Aug 2002 19:03:22
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Figure 15.7: Sample variogram of the residuals from the AR1×AR1 +
pol(column,-1) model for the Tullibigeal data
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3 LogL=-4245.27 S2= 0.10545E+06 665 df

4 LogL=-4229.50 S2= 78387. 665 df

5 LogL=-4226.02 S2= 75375. 665 df

6 LogL=-4225.64 S2= 77373. 665 df

7 LogL=-4225.60 S2= 77710. 665 df

8 LogL=-4225.60 S2= 77786. 665 df

9 LogL=-4225.60 S2= 77806. 665 df

Source Model terms Gamma Component Comp/SE % C

variety 532 532 1.14370 88986.3 9.91 0 P

Variance 670 665 1.00000 77806.0 8.79 0 P

Residual AR=AutoR 67 0.671436 0.671436 15.66 0 U

Residual AR=AutoR 10 0.266088 0.266088 3.53 0 U

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 42.5 7073.70 <.001

3 weed 1 457.4 91.91 <.001

8 pol(column,-1) 1 50.8 8.73 0.005

#

#AR1xAR1 + units + pol(column,-1)

#

1 LogL=-4272.74 S2= 0.11683E+06 665 df : 1 components constrained

2 LogL=-4266.07 S2= 50207. 665 df : 1 components constrained

3 LogL=-4228.96 S2= 76724. 665 df

4 LogL=-4220.63 S2= 55858. 665 df

5 LogL=-4220.19 S2= 54431. 665 df

6 LogL=-4220.18 S2= 54732. 665 df

7 LogL=-4220.18 S2= 54717. 665 df

8 LogL=-4220.18 S2= 54715. 665 df

Source Model terms Gamma Component Comp/SE % C

variety 532 532 1.34824 73769.0 7.08 0 P

units 670 670 0.556400 30443.6 3.77 0 P

Variance 670 665 1.00000 54715.2 5.15 0 P

Residual AR=AutoR 67 0.837503 0.837503 18.67 0 U

Residual AR=AutoR 10 0.375382 0.375382 3.26 0 U

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 13.6 4241.53 <.001

3 weed 1 469.0 86.39 <.001

8 pol(column,-1) 1 18.5 4.84 0.040

The increase in REML log-likelihood is significant. The predicted means for the
varieties can be produced and printed in the .pvs file as

Warning: mv_estimates is ignored for prediction

Warning: units is ignored for prediction

---- ---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ---- ---- ----
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column evaluated at 5.5000

weed is evaluated at average value of 0.4597

Predicted values of yield

variety Predicted_Value Standard_Error Ecode

1.0000 2917.1782 179.2881 E

2.0000 2957.7405 178.7688 E

3.0000 2872.7615 176.9880 E

4.0000 2986.4725 178.7424 E

. . .

522.0000 2784.7683 179.1541 E

523.0000 2904.9421 179.5383 E

524.0000 2740.0330 178.8465 E

525.0000 2669.9565 179.2444 E

526.0000 2385.9806 44.2159 E

527.0000 2697.0670 133.4406 E

528.0000 2727.0324 112.2650 E

529.0000 2699.8243 103.9062 E

530.0000 3010.3907 112.3080 E

531.0000 3020.0720 112.2553 E

532.0000 3067.4479 112.6645 E

SED: Overall Standard Error of Difference 245.8

Note that the (replicated) check lines have lower SE than the (unreplicated) test
lines. There will also be large diffeneces in SEDs. Rather than obtaining the large
table of all SEDs, you could do the prediction in parts
predict var 1:525 column 5.5
predict var 526:532 column 5.5 !SED
to examine the matrix of pairwise prediction errors of variety differences.

15.8 Paired Case-Control study - Rice

This data is concerned with an experiment conducted to investigate the tolerance
of rice varieties to attack by the larvae of bloodworms. The data have been kindly
provided by Dr. Mark Stevens, Yanco Agricultural Institute. A full description
of the experiment is given by Stevens et al. (1999). Bloodworms are a significant
pest of rice in the Murray and Murrumbidgee irrigation areas where they can
cause poor establishment and substantial yield loss.

The experiment commenced with the transplanting of rice seedlings into trays.
Each tray contained 32 seedlings and the trays were paired so that a control
tray (no bloodworms) and a treated tray (bloodworms added) were grown in a
controlled environment room for the duration of the experiment. At the end
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of this time rice plants were carefully extracted, the root system washed and
root area determined for the tray using an image analysis system described by
Stevens et al. (1999). Two pairs of trays, each pair corresponding to a different
variety, were included in each run. A new batch of bloodworm larvae was used
for each run. A total of 44 varieties was investigated with three replicates of each.
Unfortunately the variety concurrence within runs was less than optimal. Eight
varieties occurred with only one other variety, 22 with two other varieties and
the remaining 14 with three different varieties.

In the next three sections we present an exhaustive analysis of these data using
equivalent univariate and multivariate techniques. It is convenient to use two data
files one for each approach. The univariate data file consists of factors pair, run,
variety, tmt, unit and variate rootwt. The factor unit labels the individual
trays, pair labels pairs of trays (to which varieties are allocated) and tmt is the
two level bloodworm treatment factor (control/treated). The multivariate data
file consists of factors variety and run and variates for root weight of both the
control and exposed treatments (labelled yc and ye respectively).

Preliminary analyses indicated variance heterogeneity so that subsequent analyses
were conducted on the square root scale. Figure 15.8 presents a plot of the treated
and the control root area (on the square root scale) for each variety. There is
a strong dependence between the treated and control root area, which is not
surprising. The aim of the experiment was to determine the tolerance of varieties
to bloodworms and thence identify the most tolerant varieties. The definition of
tolerance should allow for the fact that varieties differ in their inherent seedling
vigour (Figure 15.8). The original approach of the scientist was to regress the
treated root area against the control root area and define the index of vigour as
the residual from this regression. This approach is clearly inefficient since there
is error in both variables. We seek to determine an index of tolerance from the
joint analysis of treated and control root area.

Standard analysis

The allocation of bloodworm treatments within varieties and varieties within runs
defines a nested block structure of the form

run/variety/tmt = run + run.variety + run.variety.tmt

( = run + pair + pair.tmt )

( = run + run.variety + units )
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this is for the paired data   
Y=sye                   X=syc                     

Y−axis:    1.8957   14.8835   X−axis:    8.2675   23.5051   

Figure 15.8: Rice bloodworm data: Plot of square root of root weight for treated
versus control

There is an additional blocking term, however, due to the fact that the blood-
worms within a run are derived from the same batch of larvae whereas between
runs the bloodworms come from different sources. This defines a block structure
of the form

run/tmt/variety = run + run.tmt + run.tmt.variety

( = run + run.tmt + pair.tmt )

Combining the two provides the full block structure for the design, namely

run + run.variety + run.tmt + run.tmt.variety

= run + run.variety + run.tmt + units

= run + pair + run.tmt + pair.tmt

In line with the aims of the experiment the treatment structure comprises va-
riety and treatment main effects and treatment by variety interactions. In the
traditional approach the terms in the block structure are regarded as random
and the treatment terms as fixed. The choice of treatment terms as fixed or
random depends largely on the aims of the experiment. The aim of this example
is to select the ”best” varieties. The definition of best is somewhat more com-
plex since it does not involve the single trait sqrt(rootwt) but rather two traits,
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namely sqrt(rootwt) in the presence/absence of bloodworms. Thus to minimise
selection bias the variety main effects and thence the tmt.variety interactions
are taken as random. The main effect of treatment is fitted as fixed to allow for
the likely scenario that rather than a single population of treatment by variety
effects there are in fact two populations (control and treated) with a different
mean for each. There is evidence of this prior to analysis with the large differ-
ence in mean sqrt(rootwt) for the two groups (14.93 and 8.23 for control and
treated respectively). The inclusion of tmt as a fixed effect ensures that BLUPs

of tmt.variety effects are shrunk to the correct mean (treatment means rather
than an overall mean).

The model for the data is given by

y = Xτ + Z1u1 + Z2u2 + Z3u3 + Z4u4 + Z5u5 + e (15.7)

where y is a vector of length n = 264 containing the sqrt(rootwt) values, τ

corresponds to a constant term and the fixed treatment contrast and u1 . . .u5

correspond to random variety, treatment by variety, run, treatment by run and
variety by run effects. The random effects and error are assumed to be indepen-
dent Gaussian variables with zero means and variance structures var (ui) = σ2

i Ibi

(where bi is the length of ui, i = 1 . . . 5) and var (e) = σ2In.

The ASReml code for this analysis is

Bloodworm data Dr M Stevens

pair 132

rootwt

run 66

tmt 2 !A

id

variety 44 !A

rice.asd !skip 1 !DOPATH 1

!PATH 1

sqrt(rootwt) ~ mu tmt !r variety variety.tmt run pair run.tmt

0 0 0

!PATH 2

sqrt(rootwt) ~ mu tmt !r variety tmt.variety run pair tmt.run,

uni(tmt,2)

0 0 2

tmt.variety 2

2 0 DIAG .1 .1 !GU

44 0 0

tmt.run 2

2 0 DIAG .1 .1 !GU

66 0 0
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Table 15.8: Estimated variance components from univariate analyses of bloodworm
data. (a) Model with homogeneous variance for all terms and (b) Model with het-
erogeneous variance for interactions involving tmt

(a) (b)
source control treated

variety 2.378 2.334
tmt.variety 0.492 1.505 -0.372
run 0.321 0.319
tmt.run 1.748 1.388 2.223
variety.run (pair) 0.976 0.987
tmt.pair 1.315 1.156 1.359

REML log-likelihood -345.256 -343.22

The two paths in the input file define the two univariate analyses we will conduct.
We consider the results from the analysis defined in PATH 1 first. A portion of
the output file is

5 LogL=-345.306 S2= 1.3216 262 df

6 LogL=-345.267 S2= 1.3155 262 df

7 LogL=-345.264 S2= 1.3149 262 df

8 LogL=-345.263 S2= 1.3149 262 df

Source Model terms Gamma Component Comp/SE % C

variety 44 44 1.80947 2.37920 3.01 0 P

run 66 66 0.244243 0.321144 0.59 0 P

variety.tmt 88 88 0.374220 0.492047 1.78 0 P

pair 132 132 0.742328 0.976057 2.51 0 P

run.tmt 132 132 1.32973 1.74841 3.65 0 P

Variance 264 262 1.00000 1.31486 4.42 0 P

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 53.5 1484.27 <.001

4 tmt 1 60.4 469.36 <.001

The estimated variance components from this analysis are given in column (a) of
table 15.8. The variance component for the variety main effects is large. There
is evidence of tmt.variety interactions so we may expect some discrimination
between varieties in terms of tolerance to bloodworms.
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Given the large difference (p < 0.001) between tmt means we may wish to allow
for heterogeneity of variance associated with tmt. Thus we fit a separate variety
variance for each level of tmt so that instead of assuming var (u2) = σ2

2I88 we
assume

var (u2) =

[
σ2

2c 0
0 σ2

2t

]
⊗ I44

where σ2
2c and σ2

2t are the tmt.variety interaction variances for control and
treated respectively. This model can be achieved using a diagonal variance struc-
ture for the treatment part of the interaction. We also fit a separate run variance
for each level of tmt and heterogeneity at the residual level, by including the
uni(tmt,2) term. We have chosen level 2 of tmt as we expect more variation
for the exposed treatment and thus the extra variance component for this term
should be positive. Had we mistakenly specified level 1 then ASReml would have
estimated a negative component by setting the !GU option for this term. The
portion of the ASReml output for this analysis is

6 LogL=-343.428 S2= 1.1498 262 df : 1 components constrained

7 LogL=-343.234 S2= 1.1531 262 df

8 LogL=-343.228 S2= 1.1572 262 df

9 LogL=-343.228 S2= 1.1563 262 df

Source Model terms Gamma Component Comp/SE % C

variety 44 44 2.01903 2.33451 3.01 0 P

run 66 66 0.276045 0.319178 0.59 0 P

pair 132 132 0.853941 0.987372 2.59 0 P

uni(tmt,2) 264 264 0.176158 0.203684 0.32 0 P

Variance 264 262 1.00000 1.15625 2.77 0 P

tmt.variety DIAGonal 1 1.30142 1.50477 2.26 0 U

tmt.variety DIAGonal 2 -0.321901 -0.372199 -0.82 0 U

tmt.run DIAGonal 1 1.20098 1.38864 2.18 0 U

tmt.run DIAGonal 2 1.92457 2.22530 3.07 0 U

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 56.5 1276.73 <.001

4 tmt 1 60.6 448.83 <.001

The estimated variance components from this analysis are given in column (b)
of table 15.8. There is no significant variance heterogeneity at the residual or
tmt.run level. This indicates that the square root transformation of the data has
successfully stabilised the error variance. There is, however, significant variance
heterogeneity for tmt.variety interactions with the variance being much greater
for the control group. This reflects the fact that in the absence of bloodworms the
potential maximum root area is greater. Note that the tmt.variety interaction
variance for the treated group is negative. The negative component is meaningful
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(and in fact necessary and obtained by use of the !GU option) in this context since
it should be considered as part of the variance structure for the combined variety
main effects and treatment by variety interactions. That is,

var (12 ⊗ u1 + u2) =

[
σ2

1 + σ2
2c σ2

1

σ2
1 σ2

1 + σ2
2t

]
⊗ I44 (15.8)

Using the estimates from table 15.8 this structure is estimated as
[

3.84 2.33
2.33 1.96

]
⊗ I44

Thus the variance of the variety effects in the control group (also known as the
genetic variance for this group) is 3.84. The genetic variance for the treated group
is much lower (1.96). The genetic correlation is 2.33/

√
3.84 ∗ 1.96 = 0.85 which

is strong, supporting earlier indications of the dependence between the treated
and control root area (Figure 15.8).

A multivariate approach

In this simple case in which the variance heterogeneity is associated with the two
level factor tmt, the analysis is equivalent to a bivariate analysis in which the two
traits correspond to the two levels of tmt, namely sqrt(rootwt) for control and
treated. The model for each trait is given by

yj = Xτ j + Zvuvj + Zrurj + ej (j = c, t) (15.9)

where yj is a vector of length n = 132 containing the sqrtroot values for variate
j (j = c for control and j = t for treated), τ j corresponds to a constant term
and uvj and urj correspond to random variety and run effects. The design ma-
trices are the same for both traits. The random effects and error are assumed
to be independent Gaussian variables with zero means and variance structures
var

(
uvj

)
= σ2

vj
I44, var

(
urj

)
= σ2

rj
I66 and var (ej) = σ2

j I132. The bivariate
model can be written as a direct extension of (15.9), namely

y = (I2 ⊗X) τ + (I2 ⊗Zv) uv + (I2 ⊗Zr) ur + e∗ (15.10)

where y = (y′c, y′t)
′, uv =

(
u′vc

, u′vt

)′, ur =
(
u′rc

, u′rt

)′ and e∗ = (e′c,e′t)
′.

There is an equivalence between the effects in this bivariate model and the uni-
variate model of (15.7). The variety effects for each trait (uv in the bivariate
model) are partitioned in (15.7) into variety main effects and tmt.variety in-
teractions so that uv = 12 ⊗ u1 + u2. There is a similar partitioning for the run
effects and the errors (see table 15.9).
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Table 15.9 Equivalence of random effects in bivariate and univariate analyses

bivariate univariate
effects (model 15.10) (model 15.7)

trait.variety uv 12 ⊗ u1 + u2

trait.run ur 12 ⊗ u3 + u4

trait.pair e∗ 12 ⊗ u5 + e

In addition to the assumptions in the models for individual traits (15.9) the bi-
variate analysis involves the assumptions cov (uvc) u′vt

= σvctI44, cov (urc) u′rt
=

σrctI66 and cov (ec) e′t = σctI132. Thus random effects and errors are correlated
between traits. So, for example, the variance matrix for the variety effects for
each trait is given by

var (uv) =

[
σ2

vc
σvct

σvct σ2
vt

]
⊗ I44

This unstructured form for trait.variety in the bivariate analysis is equiv-
alent to the variety main effect plus heterogeneous tmt.variety interaction
variance structure (15.8) in the univariate analysis. Similarly the unstructured
form for trait.run is equivalent to the run main effect plus heterogeneous
tmt.run interaction variance structure. The unstructured form for the errors
(trait.pair) in the bivariate analysis is equivalent to the pair plus heteroge-
neous error (tmt.pair) variance in the univariate analysis. This bivariate analysis
is achieved in ASReml as follows, noting that the tmt factor here is equivalent to
traits.

this is for the paired data

id

pair 132

run 66

variety 44 !A

yc ye

ricem.asd !skip 1 !X syc !Y sye

sqrt(yc) sqrt(ye) ~ Trait !r Tr.variety Tr.run

1 2 2

132 !S2==1

Tr 0 US 2.21 1.1 2.427

Tr.variety 2

2 0 US 1.401 1 1.477

44 0 0
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Tr.run 2

2 0 US .79 .5 2.887

66 0 0

predict variety

A portion of the output from this analysis is

7 LogL=-343.220 S2= 1.0000 262 df

8 LogL=-343.220 S2= 1.0000 262 df

Source Model terms Gamma Component Comp/SE % C

Residual UnStruct 1 2.14373 2.14373 4.44 0 U

Residual UnStruct 1 0.987401 0.987401 2.59 0 U

Residual UnStruct 2 2.34751 2.34751 4.62 0 U

Tr.variety UnStruct 1 3.83959 3.83959 3.47 0 U

Tr.variety UnStruct 1 2.33394 2.33394 3.01 0 U

Tr.variety UnStruct 2 1.96173 1.96173 2.69 0 U

Tr.run UnStruct 1 1.70788 1.70788 2.62 0 U

Tr.run UnStruct 1 0.319145 0.319145 0.59 0 U

Tr.run UnStruct 2 2.54326 2.54326 3.20 0 U

Covariance/Variance/Correlation Matrix UnStructured

2.144 0.4402

0.9874 2.348

Covariance/Variance/Correlation Matrix UnStructured

3.840 0.8504

2.334 1.962

Covariance/Variance/Correlation Matrix UnStructured

1.708 0.1531

0.3191 2.543

The resultant REML log-likelihood is identical to that of the heterogeneous uni-
variate analysis (column (b) of table 15.8). The estimated variance parameters
are given in Table 15.10.

Table 15.10: Estimated variance parameters from bivariate analysis of bloodworm
data

control treated
source variance variance covariance

us(trait).variety 3.84 1.96 2.33
us(trait).run 1.71 2.54 0.32
us(trait).pair 2.14 2.35 0.99
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The predicted variety means in the .pvs file are used in the following section on
interpretation of results. A portion of the file is presented below. There is a wide
range in SED reflecting the imbalance of the variety concurrence within runs.

Assuming Power transformation was (Y+ 0.000)^ 0.500

run is ignored in the prediction (except where specifically included

Trait variety Power_value Stand_Error Ecode Retransformed approx_SE

sqrt(yc) AliCombo 14.9532 0.9181 E 223.5982 27.4571

sqrt(ye) AliCombo 7.9941 0.7993 E 63.9054 12.7790

sqrt(yc) Bluebelle 13.1033 0.9310 E 171.6969 24.3980

sqrt(ye) Bluebelle 6.6299 0.8062 E 43.9559 10.6901

sqrt(yc) C22 16.6679 0.9181 E 277.8192 30.6057

sqrt(ye) C22 8.9543 0.7993 E 80.1798 14.3140

. . . . . . .

sqrt(yc) YRK1 15.1859 0.9549 E 230.6103 29.0012

sqrt(ye) YRK1 8.3356 0.8190 E 69.4817 13.6534

sqrt(yc) YRK3 13.3057 0.9549 E 177.0428 25.4106

sqrt(ye) YRK3 8.1133 0.8190 E 65.8264 13.2894

SED: Overall Standard Error of Difference 1.215
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Figure 15.9 BLUPs for treated for each variety plotted against BLUPs for control
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Interpretation of results

Recall that the researcher is interested in varietal tolerance to bloodworms. This
could be defined in various ways. One option is to consider the regression implicit
in the variance structure for the trait by variety effects. The variance structure
can arise from a regression of treated variety effects on control effects, namely

uvt = βuvc + ε

where the slope β = σvct/σ2
vc

. Tolerance can be defined in terms of the deviations
from regression, ε. Varieties with large positive deviations have greatest tolerance
to bloodworms. Note that this is similar to the researcher’s original intentions
except that the regression has been conducted at the genotypic rather than the
phenotypic level. In Figure 15.9 the BLUPs for treated have been plotted against
the BLUPs for control for each variety and the fitted regression line (slope = 0.61)
has been drawn. Varieties with large positive deviations from the regression line
include YRK3, Calrose, HR19 and WC1403.
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Figure 15.10: Estimated deviations from regression of treated on control for each
variety plotted against estimate for control
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An alternative definition of tolerance is the simple difference between treated
and control BLUPs for each variety, namely δ = uvc −uvt . Unless β = 1 the two
measures ε and δ have very different interpretations. The key difference is that
ε is a measure which is independent of inherent vigour whereas δ is not. To see
this consider

cov (ε) u′vc
= cov (uvt − βuvc) u′vc

=

(
σvct −

σvct

σ2
vc

σ2
vc

)
I44

= 0

whereas

cov (δ)u′vc
= cov (uvc − uvt) u′vc

=
(
σ2

vc
− σvct

)
I44
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Figure 15.11: Estimated difference between control and treated for each variety
plotted against estimate for control
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The independence of ε and uvc and dependence between δ and uvc is clearly
illustrated in Figures 15.10 and 15.11. In this example the two measures have
provided very different rankings of the varieties. The choice of tolerance mea-
sure depends on the aim of the experiment. In this experiment the aim was to
identify tolerance which is independent of inherent vigour so the deviations from
regression measure is preferred.

15.9 Balanced longitudinal data - Random coefficients and cubic
smoothing splines - Oranges

We now illustrate the use of random coefficients and cubic smoothing splines
for the analysis of balanced longitudinal data. The implementation of cubic
smoothing splines in ASReml was originally based on the mixed model formulation
presented by Verbyla et al. (1999). More recently the technology has been
enhanced so that the user can specify knot points; in the original approach the
knot points were taken to be the ordered set of unique values of the explanatory
variable. The specification of knot points is particularly useful if the number of
unique values in the explanatory variable is large, or if units are measured at
different times.

The data we use was originally reported by Draper and Smith (1998, ex24N, p559)
and has recently been reanalysed by Pinheiro and Bates (2000, p338). The data
are displayed in Figure 15.12 and are the trunk circumferences (in millimetres) of
each of 5 trees taken at 7 times. All trees were measured at the same time so that
the data are balanced. The aim of the study is unclear, though, both previous
analyses involved modelling the overall ‘growth’ curve, accounting for the obvious
variation in both level and shape between trees. Pinheiro and Bates (2000) used
a nonlinear mixed effects modelling approach, in which they modelled the growth
curves by a three parameter logistic function of age, given by

y =
φ1

1 + exp [−(x− φ2)/φ3]
(15.11)

where y is the trunk circumference, x is the tree age in days since December 31
1968, φ1 is the asymptotic height, φ2 is the inflection point or the time at which
the tree reaches 0.5φ1, φ3 is the time elapsed between trees reaching half and
about 3/4 of φ1.

The datafile consists of 5 columns viz, Tree, a factor with 5 levels, age, tree age
in days since 31st December 1968, circ the trunk circumference and season. The
last column season was added after noting that tree age spans several years and if
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this is the orange data   circ         age          Tree          

  1   2   3

  4   5

Figure 15.12 Trellis plot of trunk circumference for each tree

converted to day of year, measurements were taken in either Spring (April/May)
or Autumn (September/October).

First we demonstrate the fitting of a cubic spline in ASReml by restricting the
dataset to tree 1 only. The model includes the intercept and linear regression of
trunk circumference on age and an additional random term spl(age,7) which
instructs ASReml to include a random term with a special design matrix with
7 − 2 = 5 columns which relate to the vector, δ whose elements δi, i = 2, . . . , 6
are the second differentials of the cubic spline at the knot points. The second
differentials of a natural cubic spline are zero at the first and last knot points
(Green and Silverman, 1994). The ASReml job is

this is the orange data, for tree 1

seq # record number is not used

Tree 5

age # 118 484 664 1004 1231 1372 1582

circ

season !L Spring Autumn

orange.asd !skip 1 !filter 2 !select 1

!SPLINE spl(age,7) 118 484 664 1004 1231 1372 1582

!PVAL age 150 200:1500

circ ~ mu age !r spl(age,7)

predict age
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Note that the data for tree 1 has been selected by use of the !filter and !select
qualifiers. Also note the use of !PVAL so that the spline curve is properly predicted
at the additional nominated points. These additional data points are required for
ASReml to form the design matrix to properly interpolate the cubic smoothing
spline between knot points in the prediction process. Since the spline knot points
are specifically nominated in the !SPLINE line, these extra points have no effect
on the analysis run time. The !SPLINE line does not modify the analysis in this
example since it simply nominates the 7 ages in the data file. The same analysis
would result if the !SPLINE line was omitted and spl(age,7) in the model was
replaced with spl(age). An extract of the output file is

1 LogL=-20.9043 S2= 48.470 5 df 0.1000 1.000

2 LogL=-20.9017 S2= 49.022 5 df 0.9266E-01 1.000

3 LogL=-20.8999 S2= 49.774 5 df 0.8356E-01 1.000

4 LogL=-20.8996 S2= 50.148 5 df 0.7937E-01 1.000

5 LogL=-20.8996 S2= 50.213 5 df 0.7866E-01 1.000

Final parameter values 0.78798E-01 1.0000

Approximate stratum variance decomposition

Stratum Degrees-Freedom Variance Component Coefficients

spl(age,7) 1.49 97.4813 12.0 1.0

Residual Variance 3.51 50.1888 0.0 1.0

Source Model terms Gamma Component Comp/SE % C

spl(age,7) 5 5 0.787457E-01 3.95215 0.40 0 P

Variance 7 5 1.00000 50.1888 1.33 0 P

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 3.5 1382.80 <.001

3 age 1 3.5 217.60 <.001

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

Estimate Standard Error T-value T-prev

3 age

1 0.814772E-01 0.552336E-02 14.75

7 mu

1 24.4378 5.75429 4.25

6 spl(age,7) 5 effects fitted

Finished: 19 Aug 2005 10:08:11.980 LogL Converged

The REML estimate of the smoothing constant indicates that there is some non-
linearity. The fitted cubic smoothing spline is presented in Figure 15.13. The
fitted values were obtained from the .pvs file. The four points below the line
were the spring measurements.
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Figure 15.13 Fitted cubic smoothing spline for tree 1

We now consider the analysis of the full dataset. Following Verbyla et al. (1999)
we consider the analysis of variance decomposition (see Table 15.11) which models
the overall and individual curves.

An overall spline is fitted as well as tree deviation splines. We note however,
that the intercept and slope for the tree deviation splines are assumed to be
random effects. This is consistent with Verbyla et al. (1999). In this sense the
tree deviation splines play a role in modelling the conditional curves for each tree
and variance modelling. The intercept and slope for each tree are included as
random coefficients (denoted by RC in Table 15.11). Thus, if U5×2 is the matrix
of intercepts (column 1) and slopes (column 2) for each tree, then we assume that

var (vec(U)) = Σ⊗ I5

where Σ is a 2 × 2 symmetric positive definite matrix. Non smooth variation
can be modelled at the overall mean (across trees) level and this is achieved in
ASReml by inclusion of fac(age) as a random term.
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Table 15.11 Orange data: AOV decomposition

stratum decomposition type df or ne

constant 1 F 1
age

age F 1
spl(age,7) R 5
fac(age) R 7

tree
tree RC 5

age.tree
x.tree RC 5
spl(age,7).tree R 25

error R

An extract of the ASReml input file is

circ ~ mu age !r Tree 4.6 Tree.age .000094 spl(age,7) .1,

spl(age,7).Tree 2.3 fac(age) 13.9

0 0 1

Tree 2

2 0 US 4.6 .00001 .000094

5 0 0

predict age Tree !IGNORE fac(age)

We stress the importance of model building in these settings, where we generally
commence with relatively simple variance models and update to more complex
variance models if appropriate. Table 15.12 presents the sequence of fitted mod-
els we have used. Note that the REML log-likelihoods for models 1 and 2 are
comparable and likewise for models 3 to 6. The REML log-likelihoods are not
comparable between these groups due to the inclusion of the fixed season term
in the second set of models.

We begin by modelling the variance matrix for the intercept and slope for each
tree, Σ, as a diagonal matrix as there is no point including a covariance com-
ponent between the intercept and slope if the variance component(s) for one (or
both) is zero. Model 1 also does not include a non-smooth component at the
overall level (that is, fac(age)). Abbreviated output is shown below.
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Table 15.12 Sequence of models fitted to the Orange data

model

term 1 2 3 4 5 6

tree y y y y y y
age.tree y y y y y y
(covariance) n n n n n y
spl(age,7) y y y y n y
tree.spl(age,7) y y y n y y
fac(age) n y y n n n
season n n y y y y

REML log-likelihood -97.78 -94.07 -87.95 -91.22 -90.18 -87.43

12 LogL=-97.7788 S2= 6.3550 33 df

Source Model terms Gamma Component Comp/SE % C

Tree 5 5 4.79025 30.4420 1.24 0 P

Tree.age 5 5 0.939436E-04 0.597011E-03 1.41 0 P

spl(age,7) 5 5 100.513 638.759 1.55 0 P

spl(age,7).Tree 25 25 1.11728 7.10033 1.44 0 P

Variance 35 33 1.00000 6.35500 1.74 0 P

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 4.0 47.04 0.002

3 age 1 4.0 95.00 <.001

A quick look suggests this is fine until we look at the predicted curves in Fig-
ure 15.14. The fit is unacceptable because the spline has picked up too much
curvature, and suggests that there may be systematic non-smooth variation at
the overall level. This can be formally examined by including the fac(age) term
as a random effect. This increased the log-likelihood 3.71 (P < 0.05) with the
spl(age,7) smoothing constants heading to the boundary. There is a possible
explanation in the season factor. When this is added (Model 3) it has an F ratio
of 107.5 (P < 0.01) while the fac(age) term goes to the boundry. Notice that
the inclusion of the fixed term season in models 3 to 6 means that comparisons
with models 1 and 2 on the basis of the log-likelihood are not valid. The spring
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Figure 15.14 Plot of fitted cubic smoothing spline for model 1

measurements are lower than the autumn measurements so growth is slower in
winter. Models 4 and 5 successively examined each term, indicating that both
smoothing constants are significant (P < 0.05). Lastly we add the covariance
parameter between the intercept and slope for each tree in model 6. This ensures
that the covariance model will be translation invariant. A portion of the output
file for model 6 is

8 LogL=-87.4291 S2= 5.6303 32 df

Source Model terms Gamma Component Comp/SE % C

spl(age,7) 5 5 2.17239 12.2311 1.09 0 P

spl(age,7).Tree 25 25 1.38565 7.80160 1.47 0 P

Variance 35 32 1.00000 5.63028 1.72 0 P

Tree UnStru 1 1 5.62219 31.6545 1.26 0 U

Tree UnStru 2 1 -0.124202E-01 -0.699290E-01 -0.85 0 U

Tree UnStru 2 2 0.108377E-03 0.610192E-03 1.40 0 U

Covariance/Variance/Correlation Matrix UnStructured

31.65 -0.5032

-0.6993E-01 0.6102E-03

Analysis of Variance NumDF DenDF F_inc Prob

7 mu 1 4.0 169.87 <.001

3 age 1 4.0 92.78 <.001

5 Season 1 8.9 108.60 <.001
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Figure 15.15: Trellis plot of trunk circumference for each tree at sample dates (ad-
justed for season effects), with fitted profiles across time and confidence intervals

Figure 15.15 presents the predicted growth over time for individual trees and a
marginal prediction for trees with approximate confidence intervals (2±× stan-
dard error of prediction). Within this figure, the data is adjusted to remove the
estimated seasonal effect. The conclusions from this analysis are quite differ-
ent from those obtained by the nonlinear mixed effects analysis. The individual
curves for each tree are not convincingly modelled by a logistic function. Fig-
ure 15.16 presents a plot of the residuals from the nonlinear model fitted on p340
of Pinheiro and Bates (2000). The distinct pattern in the residuals, which is the
same for all trees is taken up in our analysis by the season term.
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Figure 15.16 Plot of the residuals from the nonlinear model of Pinheiro and Bates

15.10 Multivariate animal genetics data - Sheep

The analysis of incomplete or unbalanced multivariate data often presents com-
putational difficulties. These difficulties are exacerbated by either the number of
random effects in the linear mixed model, the number of traits, the complexity of
the variance models being fitted to the random effects or the size of the problem.
In this section we illustrate two approaches to the analysis of a complex set of
incomplete multivariate data.

Much of the difficulty in conducting such analyses in ASReml centres on obtaining
good starting values. Derivative based algorithms such as the AI algorithm can be
unreliable when fitting complex variance structures unless good starting values
are available. Poor starting values may result in divergence of the algorithm
or slow convergence. A particular problem with fitting unstructured variance
models is keeping the estimated variance matrix positive definite. These are not
simple issues and in the following we present a pragmatic approach to them.
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The data are taken from a large genetic study on Coopworth lambs. A total of 5
traits, namely weaning weight (wwt), yearling weight (ywt), greasy fleece weight
(gfw), fibre diameter (fdm) and ultrasound fat depth at the C site (fat) were
measured on 7043 lambs. The lambs were the progeny of 92 sires and 3561 dams,
produced from 4871 litters over 49 flock-year combinations. Not all traits were
measured on each group. No pedigree data was available for either sires or dams.

The aim of the analysis is to estimate heritability (h2) of each trait and to estimate
the genetic correlations between the five traits. We will present two approaches,
a half-sib analysis and an analysis based on the use of an animal model, which
directly defines the genetic covariance between the progeny and sires and dams.

The data fields included factors defining sire, dam and lamb (tag), covariates such
as age, the age of the lamb at a set time, brr the birth rearing rank (1 = born
single raised single, 2 = born twin raised single, 3 = born twin raised twin and 4
= other), sex (M, F) and grp a factor indicating the flock-year combination.

Half-sib analysis

In the half-sib analysis we include terms for the random effects of sires, dams and
litters. In univariate analyses the variance component for sires is denoted by
σ2

s = 1
4σ2

A where σ2
A is the additive genetic variance, the variance component for

dams is denoted by σ2
d = 1

4σ2
A +σ2

m where σ2
m is the maternal variance component

and the variance component for litters is denoted by σ2
l and represents variation

attributable to the particular mating.

For a multivariate analysis these variance components for sires, dams and
litters are, in theory replaced by unstructured matrices, one for each term.
Additionally we assume the residuals for each trait may be correlated. Thus for
this example we would like to fit a total of 4 unstructured variance models. For
such a situation, it is sensible to commence the modelling process with a series of
univariate analyses. These give starting values for the diagonals of the variance
matrices, but also indicate what variance components are estimable. The ASReml

job for the univariate analyses is

Multivariate Sire & Dam model

tag

sire 92 !I

dam 3561 !I

grp 49

sex

brr 4

litter 4871
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Table 15.13: REML estimates of a subset of the variance parameters for each trait
for the genetic example, expressed as a ratio to their asymptotic s.e.

term wwt ywt gfw fdm fat

sire 3.68 3.57 3.95 1.92 1.92
dam 6.25 4.93 2.78 0.37 0.05

litter 8.79 0.99 2.23 1.91 0.00
age.grp 2.29 1.39 0.31 1.15 1.74
sex.grp 2.90 3.43 3.70 - 1.83

Table 15.14 Wald tests of the fixed effects for each trait for the genetic example

term wwt ywt gfw fdm fat

age 331.3 67.1 52.4 2.6 7.5
brr 554.6 73.4 14.9 0.3 13.9
sex 196.1 123.3 0.2 2.9 0.6

age.sex 10.3 1.7 1.9 - 5.0

age wwt !M0 ywt !M0 # !M0 recodes zeros as missing values

gfw !M0 fdm !M0 fat !M0

coop.fmt

wwt ~ mu age brr sex age.sex !r sire dam lit age.grp sex.grp !f grp

Tables 15.13 and 15.14 present the summary of these analyses. Fibre diameter
was measured on only 2 female lambs and so interactions with sex were not
fitted. The dam variance component was quite small for both fibre diameter and
fat. The REML estimate of the variance component associated with litters was
effectively zero for fat.

Thus in the multivariate analysis we consider fitting the following models to the
sire, dam and litter effects,

var (us) = Σs ⊗ I92
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var (ud) = Σd ⊗ I3561

var (ul) = Σl ⊗ I4891

where Σ5×5
s ,Σ3×3

d and Σ4×4
l are positive definite symmetric matrices correspond-

ing to the between traits variance matrices for sires, dams and litters respectively.
The variance matrix for dams does not involve fibre diameter and fat depth, while
the variance matrix for litters does not involve fat depth. The effects in each of
the above vectors are ordered levels within traits. Lastly we assume that the
residual variance matrix is given by

Σe ⊗ I7043

Table 15.15 presents the sequence variance models fitted to each of the four
random terms sire, dam, litter and error in the ASReml job

Multivariate Sire & Dam model

tag

sire 92 !I

dam 3561 !I

grp 49

sex

brr 4

litter 4871

age wwt !m0 ywt !m0 # !M0 identifies missing values

gfw !m0 fdm !m0 fat !m0

coop.fmt !DOPATH $1 !CONTINUE !MAXIT 20

!PATH 3

!EXTRA 4

!PATH

wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,

!r Tr.sire,

!{ at(Tr,1).dam at(Tr,2).dam at(Tr,3).dam !},

!{ at(Tr,1).lit at(Tr,2).lit at(Tr,3).lit at(Tr,4).lit !},

at(Trait,1).age.grp .0024,

at(Trait,2).age.grp .0019,

at(Trait,4).age.grp .0020,

at(Trait,5).age.grp .00026,

at(Trait,1).sex.grp .93,

at(Trait,2).sex.grp 16.0,

at(Trait,3).sex.grp .28,

at(Trait,5).sex.grp 1.18,

!f Tr.grp

1 2 3 #1 R structure with 2 dimensions and 3 G structures

0 0 0 #Independent across animals

Tr 0 US #General structure across traits
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15*0. #Asreml will estimate some starting values

Tr.sire 2 #Sire effects.

!PATH 1 #Initial analysis ignoring genetic correlations

Tr 0 DIAG #Specified diagonal variance structure

0.608 1.298 0.015 0.197 0.035 #Initial sire variances

!PATH 2 #Factor Analytic model

Tr 0 FA1 !GP

0.5 0.5 -.01 -.01 0.1 #Correlation factors

0.608 1.298 0.015 0.197 0.035 #Variances

!PATH 3 #Unstructured variance model

Tr 0 US

0.6199 #Lower triangle row-wise

0.6939 1.602

0.003219 0.007424 0.01509

-0.02532 -0.05840 -0.0002709 0.1807

0.06013 0.1387 0.0006433 -0.005061 0.03487

!PATH

sire

#Maternal structure covers the 3 model terms

# at(Tr,1).dam at(Tr,2).dam at(Tr,3).dam

at(Tr,1).dam 2 # Maternal effects.

!PATH 1

3 0 CORGH !GU # Equivalent to Unstructured

.9

.1 .1

2.2 4.14 0.018

!PATH 2

3 0 CORGH !GU

.9

.1 .1

2.2 4.14 0.018

!PATH 3

3 0 US !GU

.9

.1 .1

2.2 4.14 0.018

!PATH

dam

#Litter structure covers the 4 model terms at(Tr,1).lit at(Tr,2).lit

#at(Tr,3).lit at(Tr,4).lit

at(Tr,1).lit 2 # Litter effects.

!PATH 1

4 0 DIAG # Diagonal structure
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3.74 0.97 0.019 0.941

!PATH 2

4 0 FA1 !GP # Factor Analytic 1

.5 .5 .01 .1

4.95 4.63 0.037 0.941

!PATH 3

4 0 US # Unstructured

5.073

3.545 3.914

0.1274 0.08909 0.02865

0.07277 0.05090 0.001829 1.019

!PATH

lit

Table 15.15: Variance models fitted for each part of the ASReml job in the analysis
of the genetic example

term matrix !PATH 1 !PATH 2 !PATH 3

sire Σs DIAG FA1 US
dam Σd CORGH CORGH US

litter Σl DIAG FA1 US
error Σe US US US

In !PATH 1, the error variance model is taken to be unstructured, but the starting
values are set to zero. This instructs ASReml to obtain starting values from the
sample covariance matrix of the data. For incomplete data the matrix so obtained
may not, in general be positive definite. Care should be taken when using this
option for incomplete multivariate data. The command to run !PATH 1 is

asreml -nrw64 mt 1

The Loglikelihood from this run is −20000 − 1444.93. When the job runs, the
message

Non positive definite G matrix: 0 singularities 1 negative pivots;
order 3

appears to the screen. This refers to the 3× 3 dam matrix which is estimated as
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Covariance/Variance/Correlation Matrix CORRelation

2.573 1.025 0.6568

3.024 3.382 0.7830

0.1526 0.2086 0.2098E-01

Note the correlation between wwt and ywt is estimated at 1.025.

The results from this analysis can be automatically used by ASReml for the next
part, if the .rsv is copied prior to running the next part. That is, we add the
!PATH 2 coding to the job, copy mt1.rsv to mt2.rsv so that when we run !PATH
2 it starts from where !PATH 1 finished, and run the job using

asreml -cnrw64 mt 2

The Loglikelihood from this run is −20000− 1427.37.

Finally, we use the !PATH 3 coding to obtain the final analysis, copy mt2.rsv to
mt3.rsv and run the final stage starting from the stage 2 results. Note that we
are using the automatic updating associated with !CONTINUE. A portion of the
final output file is

Notice: LogL values are reported relative to a base of -20000.00

NOTICE: 76 singularities detected in design matrix.

1 LogL=-1427.37 S2= 1.0000 35006 df : 2 components constrained

2 LogL=-1424.58 S2= 1.0000 35006 df

3 LogL=-1421.07 S2= 1.0000 35006 df : 1 components constrained

4 LogL=-1420.11 S2= 1.0000 35006 df

5 LogL=-1419.93 S2= 1.0000 35006 df

6 LogL=-1419.92 S2= 1.0000 35006 df

7 LogL=-1419.92 S2= 1.0000 35006 df

8 LogL=-1419.92 S2= 1.0000 35006 df

9 LogL=-1419.92 S2= 1.0000 35006 df

10 LogL=-1419.92 S2= 1.0000 35006 df

11 LogL=-1419.92 S2= 1.0000 35006 df

Source Model terms Gamma Component Comp/SE % C

at(Trait,1).age.grp 49 49 0.135360E-02 0.135360E-02 2.03 0 P

at(Trait,2).age.grp 49 49 0.101561E-02 0.101561E-02 1.24 0 P

at(Trait,4).age.grp 49 49 0.176505E-02 0.176505E-02 1.13 0 P

at(Trait,5).age.grp 49 49 0.209279E-03 0.209279E-03 1.68 0 P

at(Trait,1).sex.grp 49 49 0.919610 0.919610 2.89 0 P

at(Trait,2).sex.grp 49 49 15.3912 15.3912 3.50 0 P

at(Trait,3).sex.grp 49 49 0.279496 0.279496 3.71 0 P

at(Trait,5).sex.grp 49 49 1.44032 1.44032 1.80 0 P

Residual UnStru 1 1 9.46220 9.46220 33.30 0 U

: : : : :
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Covariance/Variance/Correlation Matrix UnStructured Residual

9.462 0.5691 0.2356 0.1640 0.2183

7.332 17.54 0.4241 0.2494 0.4639

0.2728 0.6686 0.1417 0.3994 0.1679

0.9625 1.994 0.2870 3.642 0.4875E-01

0.8336 2.412 0.7846E-01 0.1155 1.541

Covariance/Variance/Correlation Matrix UnStructured Tr.sire

0.5941 0.7044 0.2966 0.2032 0.2703

0.6745 1.544 0.1364E-01-0.1224 0.5726

0.2800E-01 0.2076E-02 0.1500E-01 0.1121 -0.4818E-02

0.6238E-01-0.6056E-01 0.5469E-02 0.1586 -0.6331

0.3789E-01 0.1294 -0.1073E-03-0.4586E-01 0.3308E-01

Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).dam

2.161 1.010 0.7663

2.196 2.186 0.8301

0.1577 0.1718 0.1959E-01

Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).lit

3.547 0.5065 -0.1099 -0.4096E-01

1.555 2.657 0.1740 -0.5150

-0.2787E-01 0.3821E-01 0.1815E-01-0.3282

-0.7312E-01-0.7957 -0.4191E-01 0.8984

Analysis of Variance NumDF F_inc

15 Tr.age 5 98.95

16 Tr.brr 15 116.72

17 Tr.sex 5 59.78

19 Tr.age.sex 4 4.90

In the .res file is reported an eigen analysis of these four variance structures.

Eigen Analysis of UnStructured matrix for Residual

Eigen values 22.458 5.210 3.395 1.160 0.103

Percentage 69.474 16.118 10.502 3.588 0.318

1 0.4970 -0.8663 0.0141 0.0470 0.0027

2 0.8509 0.4765 -0.1316 -0.1746 -0.0327

3 0.0335 0.0230 0.0585 -0.0048 0.9974

4 0.1168 0.0871 0.9843 0.0769 -0.0633

5 0.1187 0.1196 -0.1010 0.9805 0.0039

Eigen Analysis of UnStructured matrix for Tr.sire

Eigen values 1.904 0.304 0.114 0.013 0.010

Percentage 81.199 12.963 4.859 0.535 0.444

1 0.4578 0.7476 0.4695 -0.1052 0.0087

2 0.8860 -0.3646 -0.2766 0.0248 -0.0700

3 0.0077 0.0798 0.0826 0.9438 -0.3098

4 -0.0163 0.5260 -0.8015 0.1116 0.2612

5 0.0710 -0.1587 0.2320 0.2918 0.9115

Eigen Analysis of UnStructured matrix for at(Tr,1).dam
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Eigen values 4.382 0.010 -0.025

Percentage 100.352 0.225 -0.577

1 0.7041 -0.2321 0.6711

2 0.7081 0.1585 -0.6881

3 0.0533 0.9597 0.2760

Eigen Analysis of UnStructured matrix for at(Tr,1).lit

Eigen values 4.795 1.827 0.482 0.016

Percentage 67.345 25.664 6.769 0.221

1 0.7752 0.5928 0.2178 0.0133

2 0.6159 -0.6328 -0.4691 -0.0106

3 0.0016 -0.0340 0.0255 0.9991

4 -0.1403 0.4969 -0.8555 0.0390

The REML estimates of all the variance matrices except for the dam components
are positive definite. Heritabilities for each trait can be calculated using the .pin
file facility of ASReml. The heritability is given by

h2 =
σ2

A

σ2
P

where σ2
P is the phenotypic variance and is given by

σ2
P = σ2

s + σ2
d + σ2

l + σ2
e

recalling that
σ2

s =
1
4
σ2

A

σ2
d =

1
4
σ2

A + σ2
m

In the half-sib analysis we only use the estimate of additive genetic variance from
the sire variance component. The ASReml .pin file is presented below along with
the output from the following command

asreml -p mt3

F phenWYG 9:14 + 24:29 + 39:44 + 45:50 # defines 55:60

F phenD 15:18 + 30:33 + 51:54 # defines 61:64

F phenF 19:23 + 34:38 # defines 65:69

F Direct 24:38 * 4. # defines 70:84

F Maternal 39:44 - 24:29 # defines 85:90

H WWTh2 70 55

H YWTh2 72 57

H GFWh2 75 60

H FDMh2 79 64

H FATh2 84 69

R GenCor 24:38

R MatCor 85:90
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55 phenWYG 9 15.76 0.3130

56 phenWYG 10 11.76 0.3749

57 phenWYG 11 23.92 0.6313

. . . . .

70 Direct 24 2.376 0.6458

71 Direct 25 2.698 0.8487

72 Direct 26 6.174 1.585

73 Direct 27 0.1120 0.7330E-01

. . . . .

85 Maternal 39 1.567 0.3788

86 Maternal 40 1.521 0.4368

87 Maternal 41 0.6419 0.7797

. . . . .

WWTh2 = Direct 2 70/phenWYG 55= 0.1507 0.0396

YWTh2 = Direct 2 72/phenWYG 57= 0.2581 0.0624

GFWh2 = Direct 2 75/phenWYG 60= 0.3084 0.0716

FDMh2 = Direct 3 79/phenD 18 64= 0.1350 0.0717

FATh2 = Direct 3 84/phenF 23 69= 0.0841 0.0402

GenCor 2 1 = Tr.si 25/SQR[Tr.si 24*Tr.si 26]= 0.7044 0.1025

GenCor 3 1 = Tr.si 27/SQR[Tr.si 24*Tr.si 29]= 0.2966 0.1720

GenCor 3 2 = Tr.si 28/SQR[Tr.si 26*Tr.si 29]= 0.0136 0.1810

GenCor 4 1 = Tr.si 30/SQR[Tr.si 24*Tr.si 33]= 0.2028 0.3513

GenCor 4 2 = Tr.si 31/SQR[Tr.si 26*Tr.si 33]= -0.1227 0.3247

GenCor 4 3 = Tr.si 32/SQR[Tr.si 29*Tr.si 33]= 0.1115 0.3868

GenCor 5 1 = Tr.si 34/SQR[Tr.si 24*Tr.si 38]= 0.2703 0.2724

GenCor 5 2 = Tr.si 35/SQR[Tr.si 26*Tr.si 38]= 0.5726 0.2022

GenCor 5 3 = Tr.si 36/SQR[Tr.si 29*Tr.si 38]= -0.0048 0.2653

GenCor 5 4 = Tr.si 37/SQR[Tr.si 33*Tr.si 38]= -0.6333 0.3775

MatCor 2 1 = Mater 86/SQR[Mater 85*Mater 87]= 1.5168 0.7131

MatCor 3 1 = Mater 88/SQR[Mater 85*Mater 90]= 1.5285 1.1561

MatCor 3 2 = Mater 89/SQR[Mater 87*Mater 90]= 3.1251 2.7985
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Animal model

In this section we will illustrate the use of .ped files to define the genetic pedigree
structure between animals. This is an alternate method of estimating additive
genetic variance for these data. The variance matrix of the animals (sires, dams
and lambs) for which we only have data on lambs is given by

var (uA) = ΣA ⊗A−1

where A−1 is the inverse of the genetic relationship matrix. There are a total
of 10696 = 92 + 3561 + 7043 animals in the pedigree. The ASReml input file is
presented below. Note that this model is not equivalent to the sire/dam/litter
model with respect to the animal/litter components for gfw, fd and fat.

Multivariate Animal model

tag !P

sire

dam !P

grp 49

sex

brr 4

litter 4871

age wwt !m0 ywt !m0 # !M0 identifies missing values

gfw !m0 fdm !m0 fat !m0

coop.fmt # read pedigree from first three fields

coop.fmt !DOPATH $1 !CONTINUE !MAXIT 20 !STEP 0.01

# $1 allows selection of PATH as a command line argument

!PATH 3

!EXTRA 4 # Force 4 more iterations after convergence criterion met

!PATH

wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,

!r Tr.tag ,

at(Tr,1).dam, at(Tr,2).dam, -at(Tr,3).dam .003,

at(Tr,1).lit, at(Tr,2).lit, at(Tr,3).lit, at(Tr,4).lit,

at(Trait,1).age.grp .0024,

at(Trait,2).age.grp .0019,

at(Trait,4).age.grp .0020,

at(Trait,5).age.grp .00026,

at(Trait,1).sex.grp .93,

at(Trait,2).sex.grp 16.0,

at(Trait,3).sex.grp .28,

at(Trait,5).sex.grp 1.18,

!f Tr.grp

1 2 3 # One multivariate R structure, 3 G structures

0 0 0 # No structure across lamb records

# First zero lets ASReml count te number of records

Tr 0 US #General structure across traits

7.66
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5.33 13

.18 .66 .10

.78 2.1 .27 3.2

.73 2.02 .08 .20 1.44

Tr.tag 2 # Direct animal effects.

!PATH 2

Tr 0 FA1 !GP

0.5 0.5 -.01 -.01 0.1

2.4 5.2 0.06 .8 .14

!PATH 3

Tr 0 US

2.4800

2.8 6.4

0.0128 0.03 0.06

-.1 -.22 -.0011 0.72

0.24 0.55 0.0026 -0.0202 0.14

!PATH

tag

at(Tr,1).dam 2 # Maternal effects.

!PATH 2

2 0 CORGH !GFU

.99

1.6 2.54

!PATH 3

2 0 US !GU

1.1 .58 .31

!PATH

dam

at(Tr,1).lit 2 # Litter effects.

!PATH 2

4 0 FA1 !GP # Factor Analytic

.5 .5 .01 .1 .01

4.95 4.63 0.037 0.941 0.102

!PATH 3

4 0 US # Unstructured

5.073

3.545 3.914

0.1274 0.08909 0.02865

0.07277 0.05090 0.001829 1.019

!PATH

lit

The term Tr.tag now replaces the sire (and part of dam) terms in the half-sib
analysis. This analysis uses information from both sires and dams to estimate
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additive genetic variance. The dam variance component is this analysis only es-
timates the maternal variance component. It is only significant for the weaning
and yearling weights. The litter variation remains unchanged. The ASReml input
file again consists of several parts, which progressively build up to fitting unstruc-
tured variance models to Tr.tag, Tr.dam, Tr.litter and error. A portion of the
output file is

tag !P

dam !P

age wwt !m0 ywt !m0

gfw !m0 fdm !m0 fat !m0

A-inverse retrieved from ainverse.bin

PEDIGREE [pcoop.fmt ] has 10696 identities, 29474 Non zero elements

QUALIFIERS: !CONTINUE !MAXIT 20 !STEP 0.01

QUALIFIERS: !EXTRA 4

QUALIFIER: !DOPATH 3 is active

Reading pcoop.fmt FREE FORMAT skipping 0 lines

Multivariate analysis of wwt ywt gfw fdm

Multivariate analysis of fat

Using 7043 records of 7043 read

Model term Size #miss #zero MinNon0 Mean MaxNon0

1 tag !P 10696 0 0 3.000 5380. 0.1070E+05

2 sire 0 0 1.000 48.06 92.00

3 dam !P 10696 0 0 1.000 5197. 0.1070E+05

:

Forming 95033 equations: 40 dense.

Initial updates will be shrunk by factor 0.010

Restarting iteration from previous solution

Notice: LogL values are reported relative to a base of -20000.00

NOTICE: 76 singularities detected in design matrix.

1 LogL=-1437.10 S2= 1.0000 35006 df : 2 components constrained

2 LogL=-1436.87 S2= 1.0000 35006 df : 3 components constrained

3 LogL=-1434.97 S2= 1.0000 35006 df : 2 components constrained

4 LogL=-1430.73 S2= 1.0000 35006 df : 2 components constrained

5 LogL=-1424.71 S2= 1.0000 35006 df : 1 components constrained

6 LogL=-1417.98 S2= 1.0000 35006 df : 1 components constrained

7 LogL=-1417.77 S2= 1.0000 35006 df : 1 components constrained

8 LogL=-1417.62 S2= 1.0000 35006 df : 1 components constrained

9 LogL=-1417.28 S2= 1.0000 35006 df

10 LogL=-1417.23 S2= 1.0000 35006 df

:

16 LogL=-1417.23 S2= 1.0000 35006 df

Source Model terms Gamma Component Comp/SE % C

at(Trait,1).age.grp 49 49 0.132682E-02 0.132682E-02 2.02 0 P

at(Trait,2).age.grp 49 49 0.908220E-03 0.908220E-03 1.15 0 P

at(Trait,4).age.grp 49 49 0.175614E-02 0.175614E-02 1.13 0 P

at(Trait,5).age.grp 49 49 0.223617E-03 0.223617E-03 1.73 0 P
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at(Trait,1).sex.grp 49 49 0.902586 0.902586 2.88 0 P

at(Trait,2).sex.grp 49 49 15.3623 15.3623 3.50 0 P

at(Trait,3).sex.grp 49 49 0.280673 0.280673 3.71 0 P

at(Trait,5).sex.grp 49 49 1.42136 1.42136 1.80 0 P

Residual UnStru 1 1 7.47555 7.47555 13.86 0 U

:

Covariance/Variance/Correlation Matrix UnStructured Residual

7.476 0.4918 0.1339 0.1875 0.1333

4.768 12.57 0.4381 0.3425 0.3938

0.1189 0.5049 0.1056 0.4864 0.1298

0.9377 2.221 0.2891 3.345 0.1171

0.4208 1.612 0.4869E-01 0.2473 1.333

Covariance/Variance/Correlation Matrix UnStructured Tr.tag

3.898 0.8164 0.5763 0.3899E-01 0.6148

4.877 9.154 0.3689 -0.1849 0.7217

0.3029 0.2971 0.7085E-01-0.2415E-01 0.3041

0.6021E-01-0.4375 -0.5027E-02 0.6117 -0.4672

0.6154 1.107 0.4104E-01-0.1853 0.2570

Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).dam

0.9988 0.7024

0.5881 -0.7018

Covariance/Variance/Correlation Matrix UnStructured at(Tr,1).lit

3.714 0.5511 0.1635 -0.6157E-01

2.019 3.614 0.5176 -0.4380

0.4506E-01 0.1407 0.2045E-01-0.3338

-0.1021 -0.7166 -0.4108E-01 0.7407

Analysis of Variance NumDF F_inc

15 Tr.age 5 99.16

16 Tr.brr 15 116.52

17 Tr.sex 5 59.94

19 Tr.age.sex 4 5.10

There is no guarantee that unstructured variance component matrices will be
positive definite unless !GP qualifier is set. This example highlights this issue.
We used the !GU qualifier on the maternal component to obtain the matrix

[
0.9988 0.5881
0.5881 −0.7018

]
.

ASReml reports the correlation as 0.7024 which it obtains by ignoring the sign in
-0.7018. This is the maternal component for ywt. Since it is entirely reasonable
to expect maternal influences on growth to have dissipated at 12 months of age,
it would be reasonable to refit the model omitting at(Tr,2).dam and changing
the dimension of the G structure.
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.veo, 189

.vrb, 207

.vvp, 189, 208

.yht, 38, 189, 195

overspecified, 16

own models, 132

OWN variance structure, 131

!F2, 132

!T, 132

parameter

scale, 7

variance, 7

Path

DOPATH, 187

PATH, 187

PC environment, 177

pedigree, 149

file, 150

power, 129

Predict

!TP, 164

!TURNINGPOINTS, 164

$TP, 95

PLOT suboptions, 165

PRWTS, 167

predicted values, 38

prediction, 33, 157

qualifiers, 162

predictions

estimable, 39

prior mean, 15

product

direct, 9

qualifier

!UpArrow, 53

!<, 53

!<=, 53

!<>, 53
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!==, 53

!>, 53

!>=, 53

!*, 53

!+, 53

!-, 53

!/, 53

!=s, 133

!=, 53

!ABS, 53

!ADJUST, 73

!AILOADINGS, 79

!AISINGULARITIES, 72

!ALPHA, 152

!AOD Analysis of Deviance, 98

!ARCSIN , 53

!ARGS, 180

!ASK, 180

!ASMV, 67

!ASUV, 67

!A, 48

!BINOMIAL distribution, 98

!BLUP, 72

!BMP, 72

!BRIEF, 72, 180

!CINV, 79

!COLFAC, 67

!COMPLOGLOG , 98

!CONTINUE, 64, 139, 180

!CONTRAST, 64

!COS, 53

!CSV, 60

!CYCLE, 186

!DATAFILE, 73

!DDF, 68

!DEBUG, 180

!DEC, 164

!DENSE, 73

!DEVIANCE residuals, 99

!DF, 73

!DIAG, 152

!DISPLAY, 68

!DISP dispersion, 98

!DOM dominance, 57

!DOPART, 187

!DOPATH, 187

!D, 53

!EMFLAG , 74

!EPS, 68

!EXP, 54

!EXTRA, 75

!FACPOINTS, 80

!FCON, 65

!FILTER, 60

!FINAL, 180

!FORMAT, 60

!GAMMA distribution, 98

!GF, 133

!GIV, 152

!GKRIGE, 69

!GP, 133

!GRAPHICS, 180

!GROUPS, 153

!GU, 133

!GZ, 133

!G, 49, 66, 68

!HARDCOPY, 180

!HPGL, 69

!IDENTITY link, 98

!INBRED, 153

!INCLUDE, 63

!INTERACTIVE, 180

!I, 48

!JOIN, 66, 69, 180

!Jddm, 54

!Jmmd, 54

!Jyyd, 54

!KNOTS, 80

!LAST, 75

!LOGARITHM , 98
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!LOGFILE, 180

!LOGIT , 98

!LOGIT link, 98

!LOG link, 97

!L, 48

!MAKE, 153

!MATCH, 61

!MAXIT, 65

!MAX, 54

!MBF, 69

!MERGE, 61

!MGS, 153

!MIN, 54

!MM transformation, 54, 57

!MOD, 54

!MVREMOVE, 69

!M, 54

!NA, 54

!NEGBIN distribution, 98

!NOCHECK, 80

!NOGRAPHS, 180

!NOREORDER, 80

!NORMAL, 54

!NORMAL distribution, 97

!NOSCRATCH, 80

!OFFSET variable, 99

!ONERUN, 180

!OWN, 75

!PEARSON residuals, 99

!PLOT, 164

!POISSON distribution, 98

!POLPOINTS, 80

!PPOINTS, 80

!PRINTALL, 164

!PRINT, 76

!PROBIT , 98

!PS, 69

!PVAL, 70

!PVR GLM fitted values, 99

!PVSFORM, 76

!PVW GLM fitted values, 99

!P, 48

!QUIET, 180

!READ, 62

!RECODE, 62

!RENAME, 180

!REPEAT, 153

!REPLACE, 54

!REPORT, 80

!RESCALE, 54

!RESIDUALS, 76

!RESPONSE residuals, 99

!ROWFAC, 67, 70

!RREC, 62

!RSKIP, 62

!S2==1, 134

!S2==r, 134

!S2=, 134

!SAVE, 76

!SCALE, 81

!SCORE, 81

!SCREEN, 77

!SECTION, 70

!SED, 164

!SEED, 55

!SELECT, 60

!SELF, 153

!SEQ, 55

!SETN, 55

!SETU, 55

!SET, 55

!SIN, 53

!SKIP, 60, 153

!SLNFORM, 77

!SLOW, 81

!SMX, 77

!SORT, 153

!SPATIAL, 77

!SPLINE, 71

!SQRT link, 98
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!STEP, 71

!SUBSET, 71

!SUB, 55

!SUM, 66

!TABFORM, 77

!TOLERANCE, 81

!TOTAL, 98, 99

!TWOSTAGEWEIGHTS, 164

!TWOWAY, 78

!TXTFORM, 77

!UNIFORM, 55

!VCC, 78

!VGSECTORS, 78

!VPV, 165

!VRB, 81

!V, 56

!WMF, 78

!WORKSPACE, 180

!WORK residuals, 99

!X, 66

!YHTFORM, 78

!YSS, 73, 78

!YVAR, 180

!Y, 66

!TDIFF, 164

qualifiers

datafile line, 60

genetic, 149

job control, 63

variance model, 133

R structure, 106

definition, 118

definition lines, 115

random

effects, 7

correlated, 15

regressions

model , 11

terms

multivariate, 143

random regressions, 136

random terms, 83, 89

RCB, 31

analysis, 107

design, 28

reading the data, 31, 47

REML, i, 2, 11, 17

REMLRT, 17

repeated measures, 2, 253

reserved terms, 85

Trait, 85, 95

a(t,r), 91

and(t,r), 86, 91

at(), 92

at(f,n), 85, 92

cos(v,r), 86, 92

fac(v,y), 85, 92

fac(v), 85, 92

g(f,n), 92

giv(f,n), 86, 92

h(), 93

i(f), 93

ide(f), 86, 93

inv(v,r), 86, 93

l(f), 93

leg(v,n), 86, 93

lin(f), 85, 93

log(v,r), 86, 93

ma1(f), 86, 93

ma1, 86, 93

mu, 85, 93

mv, 85, 94

out(), 94

p(v,n), 94

pol(v,n), 87, 94

pow(x,p,o), 95

qtl(), 95

s(v [,k ]), 95

sin(v,r), 87, 95

spl(v [,k ]), 85, 95
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sqrt(v,r), 87, 95

uni(f,k), 96

uni(f,n), 87

uni(f), 87

units, 85, 95

xfa(f,k), 87, 96

reserved words

AEXP, 123

AGAU, 124

AINV, 125

ANTE[1], 124

AR2, 121

AR3, 121

ARMA, 122

AR[1], 121

CHOL[1]C, 124

CHOL[1], 124

CIR, 123

CORB, 122

CORGB, 122

CORGH, 122

CORU, 122

DIAG, 124

EXP, 122

FACV[1], 125

FA[1], 125

GAU, 123

GIV, 125

IDH, 124

ID, 121

IEUC, 123

IEXP, 123

IGAU, 123

LVR, 123

MA2, 122

MAT, 124

MA[1], 122

OWN, 124

SAR2, 121

SAR, 121

SPH, 123

US, 124

XFA[1], 125

residual

error, 7

likelihood, 12

response, 83

running the job, 33

scale parameter, 7

score, 13

Score test, 66

section, 9

separability, 10

separable, 111

singularities, 102

sparse, 101

sparse fixed, 83

spatial

analysis, 261

data, 2

model, 110

specifying the data, 47

split plot design, 242

tabulation, 32

qualifiers, 157

syntax, 157

tests of hypotheses, 19

title line, 31, 47

trait, 42, 142

transformation, 50

syntax, 52

typographic conventions, 5

unbalanced

data, 250

nested design, 246

UNIX, 177

unreplicated trial, 267

variance
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parameter, 7

variance components

functions of, 170

variance header line, 115, 117

variance model

combining, 16, 134

description, 120

forming from correlation models,

126

qualifiers, 133

specification, 106

specifying, 107

variance parameters, 11

constraining, 115, 137

between structures , 138

equality , 137

variance structures, 33, 115

multivariate, 144

Wald F tests, 20

weight, 83, 96

weights, 42

workspace options, 183
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